Tsushima R G, Li R A, Backx P H
Department of Medicine, University of Toronto, Ontario, Canada.
J Gen Physiol. 1997 Apr;109(4):463-75. doi: 10.1085/jgp.109.4.463.
To explore the role of pore-lining amino acids in Na+ channel ion-selectivity, pore residues were replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+ > Li+ > NH4+ > > Cs+ and were impermeable to divalent cations. Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4+ and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4+ > K+ > Na+ > or = Li+ approximately Cs+), D1532C, and G1533C (Na+ > Li+ > or = NH4+ > K+ > Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4+ > K+ > Na+ > or = Li+ approximately Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+ > or = Sr2+ > Mg2+ > Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.
为了探究构成孔道的氨基酸在钠离子通道离子选择性中的作用,在克隆的大鼠骨骼肌钠离子通道中,将孔道残基逐个替换为半胱氨酸。通过测量非洲爪蟾卵母细胞全细胞电流的通透性和离子电流比率来确定离子选择性。rSkM1通道表现出离子选择性顺序为Na+ > Li+ > NH4+ > > Cs+,且对二价阳离子不通透。与结构域I、II和III中的半胱氨酸突变体(K1237C除外)相比,替换结构域IV中的残基显示NH4+和K+的电流和通透性比率显著增强,并且在存在外部Na+溶液时记录的反转电位出现负向偏移。结构域IV中的突变体显示出改变的选择性顺序:W1531C(NH4+ > K+ > Na+ > 或 = Li+ 约 Cs+)、D1532C和G1533C(Na+ > Li+ > 或 = NH4+ > K+ > Cs+)。用苯丙氨酸或酪氨酸保守替换结构域IV中的芳香族残基(W1531)可保留通道的Na+选择性,而丙氨酸突变体(W1531A)则降低了离子选择性。第三个孔道形成区域内的单个突变(K1237C)显著改变了rSkM1通道的选择性顺序(NH4+ > K+ > Na+ > 或 = Li+ 约 Cs+),并且对具有选择性顺序Ca2+ > 或 = Sr2+ > Mg2+ > Ba2+的二价阳离子通透。用在孔道内引入带正电荷的铵基团、大的三甲基铵部分或带负电荷的磺酸基团的甲硫代磺酸酯衍生物对K1237C、W1531C或D1532C进行巯基修饰,无法恢复这些通道的Na+选择性。通过提高细胞外pH值可在很大程度上恢复D1532C突变体的选择性,这表明改变该位置的离子化状态会影响选择性。这些数据表明,结构域III中的K1237以及结构域IV中的W1531、D1532和G1533在决定钠离子通道的离子选择性方面起关键作用。