Suppr超能文献

Inhibition of Na+,K(+)-ATPase by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose, a major constituent of both moutan cortex and Paeoniae radix.

作者信息

Satoh K, Nagai F, Ushiyama K, Yasuda I, Seto T, Kano I

机构信息

Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Japan.

出版信息

Biochem Pharmacol. 1997 Feb 21;53(4):611-4. doi: 10.1016/s0006-2952(96)00828-3.

Abstract

The inhibition of Na+,K(+)-ATPase activity by various constituents of Moutan Cortex and Paeoniae Radix was studied. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG), a major component of both crude drugs, strongly inhibited Na+,K(+)-ATPase activity (IC50 = 2.5 x 10(-6) M), whereas galloylpaeoniflorin, benzoic acid, and catechin were weakly inhibitory, and albiflorin, oxypaeoniflorin, paeoniflorin, paconol, and phenol were ineffective. The inhibition of Na+,K(+)-ATPase activity by PGG was decreased in the presence of BSA or phospholipids. The inhibition mode of PGG was noncompetitive with respect to ATP. The K0.5 value for Na+ was increased by the addition of PGG from 9.1 to 12.3 mM, whereas that for K+ was not altered. PGG also inhibited K(+)-dependent p-nitrophenyl phosphatase activity with an IC50 value of 5.3 x 10(-6) M, and the extent of the inhibition increased at higher concentrations of K+. The K0.5 value for K+ was decreased by the addition of PGG from 3.3 to 2.0 mM. These results suggested that the inhibition of Na+,K(+)-ATPase activity is caused by interaction of PGG with the enzyme in the E2 state. The inhibitory effect of Moutan Cortex or Paeoniae Radix is considered to be mainly attributable to PGG.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验