Suppr超能文献

Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen.

作者信息

Reichel C, Brugger R, Bang H, Geisslinger G, Brune K

机构信息

Department of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen/Nürnberg, Erlangen, Germany.

出版信息

Mol Pharmacol. 1997 Apr;51(4):576-82. doi: 10.1124/mol.51.4.576.

Abstract

The 2-arylpropionic acid derivatives, including ibuprofen, are the most widely used anti-inflammatory analgesic cyclooxygenase inhibitors. The (-)-R-enantiomer, which is inactive in terms of cyclooxygenase inhibition, is epimerized in vivo via the 2-arylpropionyl-coenzyme A (CoA) epimerase to the cyclooxygenase-inhibiting (+)-S-enantiomer. The molecular biology of the epimerization pathway is largely unknown. To clarify this mechanism, the sequence of the 2-arylpropionyl-CoA epimerase was identified, and the enzyme cloned and expressed. A cDNA clone encoding the 2-arylpropionyl-CoA epimerase was isolated from a rat liver cDNA library. The nucleotide and the deduced amino acid sequence of this enzyme was determined. Significant amino acid sequence similarity was found between the rat epimerase and carnitine dehydratases from Caenorhabditis elegans (41%) and Escherichia coli (27%). A bacterial expression system (E. coli strain M15[pREP4]) was used to express the epimerase protein, representing up to 20-30% of the total cellular E. coli protein. The expression of the epimerase was confirmed with Western blots using specific anti-epimerase antibodies and by measuring the rate of inversion of (R)-ibuprofenoyl-CoA. Northern blot analysis revealed a prominent 1.9-kb mRNA transcript in different rat tissues. In addition to its obvious importance in drug metabolism, the homology of the epimerase with carnitine dehydratases from several species suggests that this protein, which up to now has only been characterized as having a role in drug transformation, has a function in lipid metabolism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验