Suppr超能文献

活体肌肉粗肌丝中ATP诱导肌球蛋白头部运动的动态电子显微镜观察

Dynamic electron microscopy of ATP-induced myosin head movement in living muscle thick filaments.

作者信息

Sugi H, Akimoto T, Sutoh K, Chaen S, Oishi N, Suzuki S

机构信息

Department of Physiology, School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173, Japan.

出版信息

Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4378-82. doi: 10.1073/pnas.94.9.4378.

Abstract

Although muscle contraction is known to result from movement of the myosin heads on the thick filaments while attached to the thin filaments, the myosin head movement coupled with ATP hydrolysis still remains to be investigated. Using a gas environmental (hydration) chamber, in which biological specimens can be kept in wet state, we succeeded in recording images of living muscle thick filaments with gold position markers attached to the myosin heads. The position of individual myosin heads did not change appreciably with time in the absence of ATP, indicating stability of the myosin head mean position. On application of ATP, the position of individual myosin heads was found to move by approximately 20 nm along the filament axis, whereas no appreciable movement of the filaments was detected. The ATP-induced myosin head movement was not observed in filaments in which ATPase activity of the myosin heads was eliminated. Application of ADP produced no appreciable myosin head movement. These results show that the ATP-induced myosin head movement takes place in the absence of the thin filaments. Because ATP reacts rapidly with the myosin head (M) to form the complex (M. ADP.Pi) with an average lifetime of >10 s, the observed myosin head movement may be mostly associated with reaction, M + ATP --> M.ADP. Pi. This work will open a new research field to study dynamic structural changes of individual biomolecules, which are kept in a living state in an electron microscope.

摘要

尽管已知肌肉收缩是由粗肌丝上的肌球蛋白头部在附着于细肌丝时的运动引起的,但肌球蛋白头部运动与ATP水解的耦合仍有待研究。我们使用了一个气体环境(水化)室,在其中生物标本可以保持湿润状态,成功记录了附着有金定位标记的活肌肉粗肌丝的图像。在没有ATP的情况下,单个肌球蛋白头部的位置随时间没有明显变化,表明肌球蛋白头部平均位置的稳定性。施加ATP后,发现单个肌球蛋白头部的位置沿细丝轴移动了约20纳米,而未检测到细丝有明显移动。在肌球蛋白头部的ATP酶活性被消除的细丝中未观察到ATP诱导的肌球蛋白头部运动。施加ADP未产生明显的肌球蛋白头部运动。这些结果表明,ATP诱导的肌球蛋白头部运动在没有细肌丝的情况下发生。由于ATP与肌球蛋白头部(M)迅速反应形成平均寿命>10秒的复合物(M.ADP.Pi),观察到的肌球蛋白头部运动可能主要与反应M + ATP --> M.ADP.Pi有关。这项工作将开辟一个新的研究领域,以研究在电子显微镜下保持活体状态的单个生物分子的动态结构变化。

相似文献

1
Dynamic electron microscopy of ATP-induced myosin head movement in living muscle thick filaments.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4378-82. doi: 10.1073/pnas.94.9.4378.
4
Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17396-401. doi: 10.1073/pnas.0809581105. Epub 2008 Nov 5.
8
Structural characterization of the binding of Myosin*ADP*Pi to actin in permeabilized rabbit psoas muscle.
Biophys J. 2006 Nov 1;91(9):3370-82. doi: 10.1529/biophysj.106.086918. Epub 2006 Aug 11.
9
Differences in myosin head arrangement on relaxed thick filaments from Lethocerus and rabbit muscles.
J Muscle Res Cell Motil. 1997 Oct;18(5):529-43. doi: 10.1023/a:1018611201639.

引用本文的文献

1
Liquid electron microscopy: then, now and future.
Appl Microsc. 2019 Oct 25;49(1):9. doi: 10.1186/s42649-019-0011-7.
2
Liquid cell transmission electron microscopy and its applications.
R Soc Open Sci. 2020 Jan 15;7(1):191204. doi: 10.1098/rsos.191204. eCollection 2020 Jan.
5
Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle.
J Mol Cell Cardiol. 2016 Jul;96:11-25. doi: 10.1016/j.yjmcc.2015.02.006. Epub 2015 Feb 11.
6
Definite differences between in vitro actin-myosin sliding and muscle contraction as revealed using antibodies to myosin head.
PLoS One. 2014 Jun 11;9(2):e93272. doi: 10.1371/journal.pone.0093272. eCollection 2014.
7
Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.
PLoS One. 2013 May 15;8(5):e63658. doi: 10.1371/journal.pone.0063658. Print 2013.
8
Electron microscopy of specimens in liquid.
Nat Nanotechnol. 2011 Oct 23;6(11):695-704. doi: 10.1038/nnano.2011.161.
9
Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics.
Cell Mol Bioeng. 2009 Sep 1;2(3):366-374. doi: 10.1007/s12195-009-0084-4.
10
Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17396-401. doi: 10.1073/pnas.0809581105. Epub 2008 Nov 5.

本文引用的文献

1
Muscle structure and theories of contraction.
Prog Biophys Biophys Chem. 1957;7:255-318.
2
The mechanism of muscular contraction. Science 164:1356-1366, 1969.
Clin Orthop Relat Res. 2002 Oct(403 Suppl):S6-17.
3
A personal view of muscle and motility mechanisms.
Annu Rev Physiol. 1996;58:1-19. doi: 10.1146/annurev.ph.58.030196.000245.
5
Single myosin molecule mechanics: piconewton forces and nanometre steps.
Nature. 1994 Mar 10;368(6467):113-9. doi: 10.1038/368113a0.
6
Single-molecule analysis of the actomyosin motor using nano-manipulation.
Biochem Biophys Res Commun. 1994 Mar 15;199(2):1057-63. doi: 10.1006/bbrc.1994.1336.
7
Fine structure of the thick filament in molluscan catch muscle.
J Mol Biol. 1974 Sep 15;88(2):445-55. doi: 10.1016/0022-2836(74)90494-x.
8
Mechanism of adenosine triphosphate hydrolysis by actomyosin.
Biochemistry. 1971 Dec 7;10(25):4617-24. doi: 10.1021/bi00801a004.
10
Laser-stimulated luminescence used to measure x-ray diffraction of a contracting striated muscle.
Science. 1987 Jul 10;237(4811):164-8. doi: 10.1126/science.3496662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验