Suppr超能文献

Influence of boundary information on the perception of color.

作者信息

Montag E D

机构信息

Center for Visual Science, University of Rochester, New York 14627, USA.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 1997 May;14(5):997-1006. doi: 10.1364/josaa.14.000997.

Abstract

The integration of color and form to produce a unified percept is a central problem in vision research. We know that the spatial arrangement of colored stimuli influences their detectability. In the gap effect, for example, a small gap between two colored fields enhances their discriminability [Opt. Acta 24, 159 (1977)]. Chromatic thresholds are also reduced when test fields are spatially demarcated. To explore the mechanisms underlying these types of effect, the influence of spatial structure on chromatic sensitivity for gratings was measured. For sine-wave and square-wave gratings modulated in different directions in color space, contrast sensitivity was measured by using a two-alternative forced-choice procedure with a QUEST staircase. Thin lines, of the same orientation as that of the grating, were superimposed on it at half-cycle intervals. The phase of the superimposed lines was varied. For S-cone modulated gratings, dark lines placed at the midpoints between peaks and troughs (90 degrees) increased sensitivity. As the phase of the lines moved toward the peaks (0 degree), their effect on sensitivity declined to zero. A similar but smaller effect was seen for isoluminant L- and M-cone modulated gratings. The superimposed lines always impaired contrast sensitivity for achromatic gratings, especially at a phase of 0 degree. Spatial structure superimposed on gratings can both facilitate and impair contrast sensitivity. In the presence of sharp boundaries, chromatic sensitivity is increased. This effect may depend more on the salience of boundaries, since isoluminant lines superimposed on S-cone modulated gratings and gray lines of similar cone contrast can facilitate detection if they are of sufficient contrast. Achromatic contrast sensitivity is reduced when the boundaries are present. The additional luminance information at the boundaries masks the grating. A simple model in which spatial integration is arrested at the positions of the superimposed lines fits only the isoluminant conditions. For both luminance and chromatic contrast the change in sensitivity depends on phase.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验