Suppr超能文献

基于L1度量和突触后反应离散分布分解的噪声去卷积

Noise deconvolution based on the L1-metric and decomposition of discrete distributions of postsynaptic responses.

作者信息

Astrelin A V, Sokolov M V, Behnisch T, Reymann K G, Voronin L L

机构信息

Department of Mathematics and Mechanics, Moscow State University, Vorobiovy Gory, Russia.

出版信息

J Neurosci Methods. 1997 Apr 25;73(1):17-27. doi: 10.1016/s0165-0270(96)02206-6.

Abstract

A statistical approach to analysis of amplitude fluctuations of postsynaptic responses is described. This includes (1) using a L1-metric in the space of distribution functions for minimisation with application of linear programming methods to decompose amplitude distributions into a convolution of Gaussian and discrete distributions; (2) deconvolution of the resulting discrete distribution with determination of the release probabilities and the quantal amplitude for cases with a small number (< 5) of discrete components. The methods were tested against simulated data over a range of sample sizes and signal-to-noise ratios which mimicked those observed in physiological experiments. In computer simulation experiments, comparisons were made with other methods of 'unconstrained' (generalized) and constrained reconstruction of discrete components from convolutions. The simulation results provided additional criteria for improving the solutions to overcome 'over-fitting phenomena' and to constrain the number of components with small probabilities. Application of the programme to recordings from hippocampal neurones demonstrated its usefulness for the analysis of amplitude distributions of postsynaptic responses.

摘要

本文描述了一种用于分析突触后反应幅度波动的统计方法。这包括:(1)在分布函数空间中使用L1度量进行最小化,并应用线性规划方法将幅度分布分解为高斯分布和离散分布的卷积;(2)对于离散成分数量较少(<5)的情况,对所得离散分布进行反卷积,以确定释放概率和量子幅度。这些方法在一系列样本大小和信噪比的模拟数据上进行了测试,这些数据模拟了生理实验中观察到的情况。在计算机模拟实验中,将其与从卷积中“无约束”(广义)和约束重建离散成分的其他方法进行了比较。模拟结果提供了额外的标准,以改进解决方案,克服“过拟合现象”,并限制概率较小的成分数量。将该程序应用于海马神经元的记录,证明了其在分析突触后反应幅度分布方面的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验