Armstead W M
Department of Anesthesia, University of Pennsylvania and The Children's Hospital of Philadelphia, 19104, USA.
Am J Physiol. 1997 Apr;272(4 Pt 2):H1785-90. doi: 10.1152/ajpheart.1997.272.4.H1785.
It has been previously observed that nitric oxide (NO) contributes to hypoxic pial artery dilation and that both sodium nitroprusside (SNP), a releaser of NO, and hypoxia elicit dilation via activation of ATP-sensitive K+ channels in the newborn pig. Other studies, however, have shown that NO activates calcium-sensitive K+ (K(Ca)) channels. The present study, therefore, was designed to investigate the role of K(Ca)-channel activation in NO and hypoxic dilation and to relate this mechanism to the previously observed role of NO in hypoxic dilation in newborn pigs equipped with closed cranial windows. SNP (10(-8) and 10(-6) M) elicited pial artery dilation that was unchanged in the presence of the K(Ca)-channel antagonist iberiotoxin (10(-7) M; 10 +/- 1 and 20 +/- 1 vs. 9 +/- 1 and 20 +/- 2% for 10(-8) and 10(-6) M SNP in the absence and presence of iberiotoxin, respectively). Responses to S-nitroso-N-acetylpenicillamine and 8-bromoguanosine 3',5'-cyclic monophosphate were similarly unchanged by iberiotoxin. In contrast, iberiotoxin attenuated the dilation resulting from moderate and severe hypoxia (arterial PO2 approximately 35 and 25 mmHg, respectively; 27 +/- 1 vs. 21 +/- 2 and 34 +/- 1 vs. 16 +/- 2% for moderate and severe hypoxia in the absence and presence of iberiotoxin, respectively). Iberiotoxin blocked responses to the K(Ca)-channel agonist NS-1619, whereas responses to the ATP-sensitive K+ agonist cromakalim were unchanged (8 +/- 1 and 15 +/- 1 vs. 1 +/- 1 and 1 +/- 1% for 10(-8) and 10(-6) M NS-1619 in the absence and presence of iberiotoxin, respectively). These data show that NO and guanosine 3',5'-cyclic monophosphate do not elicit dilation via K(Ca)-channel activation. However, activation of K(Ca) channels does contribute to hypoxic pial dilation. Finally, these data suggest that substances other than NO are involved in the contribution of K(Ca)-channel activation to hypoxic pial artery dilation.
此前已有研究观察到,一氧化氮(NO)可促使软脑膜动脉在缺氧时扩张,并且在新生猪中,NO释放剂硝普钠(SNP)和缺氧均通过激活ATP敏感性钾通道引发血管扩张。然而,其他研究表明,NO可激活钙敏感性钾(K(Ca))通道。因此,本研究旨在探究K(Ca)通道激活在NO介导的和缺氧性血管扩张中的作用,并将此机制与先前观察到的在装有闭合式颅骨视窗的新生猪中NO在缺氧性血管扩张中的作用联系起来。SNP(10^(-8)和10^(-6) M)引起软脑膜动脉扩张,在存在K(Ca)通道拮抗剂iberiotoxin(10^(-7) M)的情况下,该扩张无变化(对于10^(-8) M SNP,在不存在和存在iberiotoxin时分别为10±1和20±1 vs. 9±1和20±2%;对于10^(-6) M SNP,相应数据分别为20±1和20±2%)。对S-亚硝基-N-乙酰青霉胺和8-溴鸟苷3',5'-环一磷酸的反应同样不受iberiotoxin影响。相比之下,iberiotoxin减弱了中度和重度缺氧引起的血管扩张(动脉血氧分压分别约为35和25 mmHg;对于中度缺氧,在不存在和存在iberiotoxin时分别为27±1 vs. 21±2%;对于重度缺氧,相应数据分别为34±1 vs. 16±2%)。Iberiotoxin阻断了对K(Ca)通道激动剂NS-1619的反应,而对ATP敏感性钾通道激动剂克罗卡林的反应未改变(对于10^(-8) M NS-1619,在不存在和存在iberiotoxin时分别为8±1和15±1 vs. 1±1和1±1%;对于10^(-6) M NS-1619,相应数据分别为15±1和1±1%)。这些数据表明,NO和鸟苷3',5'-环一磷酸并非通过激活K(Ca)通道引发血管扩张。然而,K(Ca)通道的激活确实有助于缺氧性软脑膜血管扩张。最后,这些数据表明,除NO之外的其他物质参与了K(Ca)通道激活对缺氧性软脑膜动脉扩张的作用。