Kanu Alie, Leffler Charles W
Laboratory for Resaerch in Neonatal Physiology, Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H3193-200. doi: 10.1152/ajpheart.00274.2007. Epub 2007 Aug 31.
Large-conductance calcium-activated potassium (K(Ca)) channels regulate the physiological functions of many tissues, including cerebrovascular smooth muscle. l-Glutamic acid (glutamate) is the principal excitatory neurotransmitter in the central nervous system, and oxygen tension is a dominant local regulator of vascular tone. In vivo, glutamate and hypoxia dilate newborn pig cerebral arterioles, and both dilations are blocked by inhibition of carbon monoxide (CO) production. CO dilates cerebral arterioles by activating K(Ca) channels. Therefore, the present study was designed to investigate the effects of glutamate and hypoxia on cerebral CO production and the role of K(Ca) channels in the cerebral arteriolar dilations to glutamate and hypoxia. In the presence of iberiotoxin or paxilline that block dilation to the K(Ca) channel opener, NS-1619, neither CO nor glutamate dilated pial arterioles. Conversely, neither paxilline nor iberiotoxin inhibited dilation to acute severe or moderate prolonged hypoxia. Both glutamate and hypoxia increased cerebrospinal fluid (CSF) CO concentration. Iberiotoxin that blocked dilation to glutamate did not attenuate the increase in CSF CO. The guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), which blocked dilation to sodium nitroprusside, did not inhibit dilation to hypoxia. These data suggest that dilation of newborn pig pial arterioles to glutamate is mediated by activation of K(Ca) channels, consistent with the intermediary signal being CO. Surprisingly, although 1) heme oxygenase (HO) inhibition attenuates dilation to hypoxia, 2) hypoxia increases CSF CO concentration, and 3) K(Ca) channel antagonists block dilation to CO, neither K(Ca) channel blockers nor ODQ altered dilation to hypoxia, suggesting the contribution of the HO/CO system to hypoxia-induced dilation is not by stimulating vascular smooth muscle K(Ca) channels or guanylyl cyclase.
大电导钙激活钾(K(Ca))通道调节包括脑血管平滑肌在内的许多组织的生理功能。L-谷氨酸(谷氨酸)是中枢神经系统中的主要兴奋性神经递质,而氧张力是血管张力的主要局部调节因子。在体内,谷氨酸和缺氧可使新生猪脑小动脉扩张,并且两种扩张都可通过抑制一氧化碳(CO)生成而被阻断。CO通过激活K(Ca)通道使脑小动脉扩张。因此,本研究旨在探讨谷氨酸和缺氧对脑CO生成的影响以及K(Ca)通道在脑小动脉对谷氨酸和缺氧扩张中的作用。在存在阻断对K(Ca)通道开放剂NS-1619扩张的埃博毒素或鬼笔环肽的情况下,CO和谷氨酸均未使软脑膜小动脉扩张。相反,鬼笔环肽和埃博毒素均未抑制对急性重度或中度长时间缺氧的扩张。谷氨酸和缺氧均增加了脑脊液(CSF)中的CO浓度。阻断对谷氨酸扩张的埃博毒素并未减弱CSF中CO的增加。鸟苷酸环化酶抑制剂1H-(1,2,4)恶二唑并(4,3-a)喹喔啉-1-酮(ODQ),其阻断对硝普钠的扩张,但未抑制对缺氧的扩张。这些数据表明,新生猪软脑膜小动脉对谷氨酸的扩张是由K(Ca)通道激活介导的,这与中间信号为CO一致。令人惊讶的是,尽管1)血红素加氧酶(HO)抑制减弱了对缺氧的扩张,2)缺氧增加了CSF中的CO浓度,以及3)K(Ca)通道拮抗剂阻断了对CO的扩张,但K(Ca)通道阻滞剂和ODQ均未改变对缺氧的扩张,这表明HO/CO系统对缺氧诱导的扩张的贡献不是通过刺激血管平滑肌K(Ca)通道或鸟苷酸环化酶。