Suppr超能文献

依兰油成分的分子结构和气相色谱保留行为

Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil.

作者信息

Olivero J, Gracia T, Payares P, Vivas R, Díaz D, Daza E, Geerlings P

机构信息

Facultad de Ciencias Químicas y Farmacéuticas, Grupo de Química Teórica, Universidad de Cartagena, Colombia.

出版信息

J Pharm Sci. 1997 May;86(5):625-30. doi: 10.1021/js960196u.

Abstract

Using quantitative structure-retention relationships (QSRR) methodologies the Kovats gas chromatographic retention indices for both apolar (DB-1) and polar (DB-Wax) columns for 48 compounds from Ylang-Ylang essential oil were empirically predicted from calculated and experimental data on molecular structure. Topological, geometric, and electronic descriptors were obtained for model generation. Relationships between descriptors and the retention data reported were established by linear multiple regression, giving equations that can be used to predict the Kovats indices for compounds present in essential oils, both in DB-1 and DB-Wax columns. Factor analysis was performed to interpret the meaning of the descriptors included in the models. The prediction model for the DB-1 column includes descriptors such as Randic's first-order connectivity index (1X), the molecular surface (MSA), the sum of the atomic charge on all the hydrogens (QH), Randic's third-order connectivity index (3X) and the molecular electronegativity (chi). The prediction model for the DB-Wax column includes the first three descriptors mentioned for the DB-1 column (1X, MSA and QH) and the most negative charge (MNC), the global softness (S), and the difference between Randic's and Kier and Hall's third-order connectivity indexes (3X-3XV).

摘要

利用定量结构-保留关系(QSRR)方法,根据分子结构的计算数据和实验数据,对依兰依兰精油中48种化合物在非极性(DB-1)柱和极性(DB-Wax)柱上的科瓦茨气相色谱保留指数进行了经验预测。获取拓扑、几何和电子描述符用于模型生成。通过线性多元回归建立描述符与所报告的保留数据之间的关系,得到可用于预测DB-1柱和DB-Wax柱中精油所含化合物科瓦茨指数的方程。进行因子分析以解释模型中包含的描述符的含义。DB-1柱的预测模型包括诸如兰迪奇一阶连接性指数(1X)、分子表面积(MSA)、所有氢原子上的原子电荷总和(QH)、兰迪奇三阶连接性指数(3X)和分子电负性(χ)等描述符。DB-Wax柱的预测模型包括为DB-1柱提到的前三个描述符(1X、MSA和QH)以及最负电荷(MNC)、全局软度(S),以及兰迪奇与基尔和霍尔三阶连接性指数之间的差值(3X - 3XV)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验