Suppr超能文献

数字解剖学家分布式框架及其在基于知识的医学成像中的应用。

The Digital Anatomist distributed framework and its applications to knowledge-based medical imaging.

作者信息

Brinkley J F, Rosse C

机构信息

Department of Biological Structure, University of Washington, Seattle 98195, USA.

出版信息

J Am Med Inform Assoc. 1997 May-Jun;4(3):165-83. doi: 10.1136/jamia.1997.0040165.

Abstract

The domain of medical imaging is anatomy. Therefore, anatomic knowledge should be a rational basis for organizing and analyzing images. The goals of the Digital Anatomist Program at the University of Washington include the development of an anatomically based software framework for organizing, analyzing, visualizing and utilizing biomedical information. The framework is based on representations for both spatial and symbolic anatomic knowledge, and is being implemented in a distributed architecture in which multiple client programs on the Internet are used to update and access an expanding set of anatomical information resources. The development of this framework is driven by several practical applications, including symbolic anatomic reasoning, knowledge based image segmentation, anatomy information retrieval, and functional brain mapping. Since each of these areas involves many difficult image processing issues, our research strategy is an evolutionary one, in which applications are developed somewhat independently, and partial solutions are integrated in a piecemeal fashion, using the network as the substrate. This approach assumes that networks of interacting components can synergistically work together to solve problems larger than either could solve on its own. Each of the individual projects is described, along with evaluations that show that the individual components are solving the problems they were designed for, and are beginning to interact with each other in a synergistic manner. We argue that this synergy will increase, not only within our own group, but also among groups as the Internet matures, and that an anatomic knowledge base will be a useful means for fostering these interactions.

摘要

医学成像的领域是解剖学。因此,解剖学知识应成为组织和分析图像的合理基础。华盛顿大学数字解剖学家计划的目标包括开发一个基于解剖学的软件框架,用于组织、分析、可视化和利用生物医学信息。该框架基于空间和符号解剖学知识的表示,并正在以分布式架构实现,其中互联网上的多个客户端程序用于更新和访问不断扩展的解剖学信息资源集。这个框架的开发受到几个实际应用的驱动,包括符号解剖推理、基于知识的图像分割、解剖学信息检索和功能性脑图谱绘制。由于这些领域中的每一个都涉及许多困难的图像处理问题,我们的研究策略是渐进式的,即应用程序是相对独立开发的,部分解决方案以零碎的方式集成,以网络为基础。这种方法假定相互作用的组件网络可以协同工作,以解决比任何一个组件单独解决的问题更大的问题。每个单独的项目都有描述,同时还有评估表明各个组件正在解决它们设计要解决的问题,并开始以协同的方式相互作用。我们认为,这种协同作用不仅会在我们自己的团队中增强,而且随着互联网的成熟,在不同团队之间也会增强,并且解剖学知识库将是促进这些互动的有用手段。

相似文献

6
Knowledge-based client-server approach to structural information retrieval: the Digital Anatomist Browser.
Comput Methods Programs Biomed. 1993 Jun;40(2):131-45. doi: 10.1016/0169-2607(93)90007-8.
8
The informatics of a C57BL/6J mouse brain atlas.C57BL/6J小鼠脑图谱的信息学
Neuroinformatics. 2003;1(4):397-410. doi: 10.1385/NI:1:4:397.
10
Combination of visual and symbolic knowledge: A survey in anatomy.视觉知识与符号知识的结合:解剖学研究
Comput Biol Med. 2017 Jan 1;80:148-157. doi: 10.1016/j.compbiomed.2016.11.018. Epub 2016 Dec 2.

引用本文的文献

8
Medical imaging informatics: challenges of definition and integration.医学影像信息学:定义与整合的挑战
J Am Med Inform Assoc. 1997 May-Jun;4(3):252-3. doi: 10.1136/jamia.1995.0040252.

本文引用的文献

1
Knowledge-driven ultrasonic three-dimensional organ modeling.知识驱动的超声三维器官建模。
IEEE Trans Pattern Anal Mach Intell. 1985 Apr;7(4):431-41. doi: 10.1109/tpami.1985.4767682.
2
3D brain mapping using a deformable neuroanatomy.使用可变形神经解剖结构的3D脑图谱绘制
Phys Med Biol. 1994 Mar;39(3):609-18. doi: 10.1088/0031-9155/39/3/022.
5
Functional MRI measurement of language lateralization in Wada-tested patients.
Brain. 1995 Dec;118 ( Pt 6):1411-9. doi: 10.1093/brain/118.6.1411.
9
Elastically deforming 3D atlas to match anatomical brain images.弹性变形三维图谱以匹配解剖学脑图像。
J Comput Assist Tomogr. 1993 Mar-Apr;17(2):225-36. doi: 10.1097/00004728-199303000-00011.
10
The Unified Medical Language System.统一医学语言系统
Methods Inf Med. 1993 Aug;32(4):281-91. doi: 10.1055/s-0038-1634945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验