Suppr超能文献

基因-环境相互作用的层次模型:评估NAT2基因特定基因型的饮食对腺瘤性息肉的影响。

Hierarchical modeling of gene-environment interactions: estimating NAT2 genotype-specific dietary effects on adenomatous polyps.

作者信息

Aragaki C C, Greenland S, Probst-Hensch N, Haile R W

机构信息

Department of Epidemiology, University of California, Los Angeles School of Public Health 90095-1772, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 1997 May;6(5):307-14.

PMID:9149889
Abstract

Data sparseness currently limits gene-environment interaction estimation. To improve effect estimates of gene-environment interactions, we give an overview of one approach, hierarchical modeling, and propose a two-stage hierarchical model. The first stage is a logistic model for the joint effects of the genetic and environmental factors. The second stage regresses the joint effects on genotype-specific enzymatic activity of the environmentally derived substrate. The model is illustrated using a case-control study of adenomas of the large bowel, for which NAT2 genotype and dietary data were collected. The first-stage interactions of dietary components and genotype were regressed on initial conversion rates of dietary heterocyclic amines to aryl nitrenium ions. We fit the hierarchical model by penalized likelihood. Compared to effect estimates from maximum-likelihood logistic regression, hierarchical results are more reasonable and precise. These results lend further support to previous observations that hierarchical regression is preferable to ordinary logistic regression when multiple factors and their interactions are being studied. We propose that hierarchical modeling can act as a bridge between molecular epidemiology studies and laboratory data, combining both efficiently.

摘要

目前,数据稀疏限制了基因-环境相互作用的估计。为了提高基因-环境相互作用的效应估计,我们概述了一种方法——分层建模,并提出了一种两阶段分层模型。第一阶段是一个用于遗传和环境因素联合效应的逻辑模型。第二阶段将联合效应回归到环境衍生底物的基因型特异性酶活性上。使用一项关于大肠腺瘤的病例对照研究对该模型进行了说明,在该研究中收集了NAT2基因型和饮食数据。饮食成分与基因型的第一阶段相互作用根据饮食杂环胺向芳基氮鎓离子的初始转化率进行回归分析。我们通过惩罚似然法拟合分层模型。与最大似然逻辑回归的效应估计相比,分层模型的结果更合理、更精确。这些结果进一步支持了之前的观察结果,即在研究多个因素及其相互作用时,分层回归比普通逻辑回归更可取。我们认为分层建模可以作为分子流行病学研究和实验室数据之间的桥梁,有效地将两者结合起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验