Tardif R, Charest-Tardif G, Brodeur J, Krishnan K
Départment de médecine du travail et d'hygiène du milieu, Faculté de médecine, Université de Montréal, Québec, Canada.
Toxicol Appl Pharmacol. 1997 May;144(1):120-34. doi: 10.1006/taap.1996.8096.
The objective of the present study was to develop a physiologically based pharmacokinetic (PBPK) model for a ternary mixture of alkyl benzenes [toluene (TOL), m-xylene (XYL), and ethylbenzene (EBZ)] in rats and humans. The approach involved the development of the mixture PBPK model in the rat and extrapolation to humans by substituting rat physiological parameters and blood:air partition coefficients in the model with those of humans, scaling maximal velocity for metabolism on the basis of body weight0.75 and keeping all other model parameters species-invariant. The development of the PBPK model for the ternary mixture in the rat was accomplished by initially validating or refining the existing PBPK models for TOL, XYL, and EBZ and linking the individual chemical models via the hepatic metabolism term. Accordingly, the Michaelis-Menten equation for each solvent was modified to test four possible mechanisms of metabolic interaction (i.e., no interaction, competitive inhibition, noncompetitive inhibition, and uncompetitive inhibition). The metabolic inhibition constant (Ki) for each binary pair of alkyl benzenes was estimated by fitting the binary chemical PBPK model simulations to previously published data on blood concentrations of TOL, XYL, and EBZ in rats exposed for 4 hr to a binary combination of 100 or 200 ppm of each of these solvents. Competitive metabolic inhibition appeared to be the most plausible mechanism of interaction at relevant exposure concentrations for all binary mixtures of alkyl benzenes in the rat (Ki,TOL-XYL = 0.17; Ki,TOL-EBZ = 0.79; Ki,XYL-TOL = 0.77; Ki,XYL-EBZ = 1.50; Ki,EBZ-TOL = 0.33; Ki,EBZ-XYL = 0.23 mg/L). Incorporating the Ki values obtained with the binary chemical mixtures, the PBPK model for the ternary mixture simulated adequately the time course of the venous blood concentrations of TOL, XYL, and EBZ in rats exposed to a mixture containing 100 ppm each of these solvents. Following the validation of the ternary mixture model in the rat, it was scaled to predict the kinetics of TOL, XYL, and EBZ in blood and alveolar air of human volunteers exposed for 7 hr to a combination of 17, 33, and 33 ppm, respectively, of these solvents. Model simulations and experimental data obtained in humans indicated that exposure to atmospheric concentrations of TOL, XYL, and EBZ that remain within the permissible concentrations for a mixture would not result in biologically significant modifications of their pharmacokinetics. Overall, this study demonstrates the utility of PBPK models in the prediction of the kinetics of components of chemical mixtures, by accounting for mechanisms of binary chemical interactions.
本研究的目的是为大鼠和人类体内的烷基苯三元混合物[甲苯(TOL)、间二甲苯(XYL)和乙苯(EBZ)]建立基于生理的药代动力学(PBPK)模型。该方法包括在大鼠中建立混合物PBPK模型,并通过将模型中的大鼠生理参数和血-气分配系数替换为人类的相应参数,根据体重0.75对代谢的最大速度进行缩放,并保持所有其他模型参数物种不变,从而外推至人类。大鼠体内三元混合物PBPK模型的建立是通过首先验证或完善现有的TOL、XYL和EBZ的PBPK模型,并通过肝脏代谢项将各个化学模型联系起来实现的。因此,对每种溶剂的米氏方程进行了修改,以测试四种可能的代谢相互作用机制(即无相互作用、竞争性抑制、非竞争性抑制和反竞争性抑制)。通过将二元化学PBPK模型模拟结果与先前发表的关于大鼠暴露于100或200 ppm每种这些溶剂的二元组合4小时后的TOL、XYL和EBZ血药浓度数据进行拟合,估计了每对烷基苯二元混合物的代谢抑制常数(Ki)。在相关暴露浓度下,竞争性代谢抑制似乎是大鼠中所有烷基苯二元混合物最合理的相互作用机制(Ki,TOL-XYL = 0.17;Ki,TOL-EBZ = 0.79;Ki,XYL-TOL = 0.77;Ki,XYL-EBZ = 1.50;Ki,EBZ-TOL = 0.33;Ki,EBZ-XYL = 0.23 mg/L)。纳入二元化学混合物获得的Ki值后,三元混合物的PBPK模型充分模拟了暴露于含有100 ppm每种这些溶剂的混合物的大鼠静脉血中TOL、XYL和EBZ浓度的时间进程。在大鼠中验证了三元混合物模型后,对其进行缩放以预测人类志愿者暴露于分别为17、33和33 ppm这些溶剂的组合7小时后血和肺泡气中TOL、XYL和EBZ的动力学。在人类中获得的模型模拟和实验数据表明,暴露于大气中TOL、XYL和EBZ的浓度在混合物允许浓度范围内不会导致其药代动力学发生生物学上显著的改变。总体而言,本研究通过考虑二元化学相互作用机制,证明了PBPK模型在预测化学混合物成分动力学方面的实用性。