Haddad S, Tardif R, Charest-Tardif G, Krishnan K
Faculté de médecine, Université de Montréal, Case Postale 6128, Succursale centre-ville, Montréal, PQ, H3C 3J7, Canada.
Toxicol Appl Pharmacol. 1999 Dec 15;161(3):249-57. doi: 10.1006/taap.1999.8803.
The available data on binary interactions are yet to be considered within the context of mixture risk assessments because of our inability to predict the effect of a third or fourth chemical in the mixture on the interacting binary pairs. Physiologically based toxicokinetic (PBTK) models represent a framework that can be potentially used for predicting the impact of multiple interactions on component kinetics at any level of complexity. The objective of this study was to develop and validate an interaction-based PBTK model for simulating the toxicokinetics of the components of a quaternary mixture of aromatic hydrocarbons [benzene (B), toluene (T), ethylbenzene (E), m-xylene (X)] in the rat. The methodology consisted of: (1) obtaining and refining the validated individual chemical PBTK models from the literature, (2) interconnecting all individual chemical PBTK models at the level of liver on the basis of the mechanism of binary chemical interactions (e.g., competitive, noncompetitive, or uncompetitive metabolic inhibition), and (3) comparing the a priori predictions of the interaction-based model to corresponding experimental data on venous blood concentrations of B, T, E, and X during mixture exposures. The analysis of blood kinetics data from inhalation exposures (4 h, 50-200 ppm each) of rats to all binary combinations of B, T, E, and X was suggestive of competitive metabolic inhibition as the plausible interaction mechanism. The metabolic inhibition constant (K(i)) for each binary combination was quantified and incorporated within the mixture PBTK model. The binary interaction-based PBTK model predicted adequately the inhalation toxicokinetics of all four components in rats following exposure to mixtures of BTEX (50 ppm each of B, T, E, and X, 4 h; 100 ppm each of B, T, E and X, 4 h; 100 ppm B + 50 ppm each of T, E, and X, 4 h). The results of the present study suggest that data on interactions at the binary level alone are required and sufficient for predicting the kinetics of components in complex mixtures.
由于我们无法预测混合物中第三种或第四种化学物质对相互作用的二元对的影响,关于二元相互作用的现有数据尚未在混合物风险评估的背景下加以考虑。基于生理学的毒代动力学(PBTK)模型代表了一个框架,该框架有可能用于预测任何复杂程度下多种相互作用对组分动力学的影响。本研究的目的是开发并验证一个基于相互作用的PBTK模型,用于模拟大鼠体内芳烃四元混合物[苯(B)、甲苯(T)、乙苯(E)、间二甲苯(X)]各组分的毒代动力学。该方法包括:(1)从文献中获取并完善经过验证的单一化学物质PBTK模型;(2)基于二元化学相互作用机制(如竞争性、非竞争性或反竞争性代谢抑制),在肝脏水平上连接所有单一化学物质PBTK模型;(3)将基于相互作用的模型的先验预测与混合物暴露期间B、T、E和X静脉血浓度的相应实验数据进行比较。对大鼠吸入B、T、E和X的所有二元组合(4小时,各50 - 200 ppm)后的血液动力学数据进行分析,结果表明竞争性代谢抑制是可能的相互作用机制。对每个二元组合的代谢抑制常数(K(i))进行了量化,并纳入混合物PBTK模型中。基于二元相互作用的PBTK模型能够充分预测大鼠在暴露于BTEX混合物(B、T、E和X各50 ppm,4小时;B、T、E和X各100 ppm,4小时;100 ppm B + T、E和X各50 ppm,4小时)后所有四种组分的吸入毒代动力学。本研究结果表明,仅二元水平上的相互作用数据就足以预测复杂混合物中各组分的动力学。