Suppr超能文献

白细胞-内皮-血液相互作用的模型研究。II. 黏附于毛细血管后血管壁的白细胞的血流动力学影响。

Model studies of leukocyte-endothelium-blood interactions. II. Hemodynamic impact of leukocytes adherent to the wall of post-capillary vessels.

作者信息

Chapman G B, Cokelet G R

机构信息

Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA.

出版信息

Biorheology. 1997 Jan-Feb;34(1):37-56. doi: 10.1016/S0006-355X(97)00003-6.

Abstract

Computational fluid dynamics (CFD) and large scale model experiments were used to analyze the hemodynamic impact of leukocytes adherent to the wall of post-capillary venules. Using a large scale model and, with the aid of a finite element package, solving the Navier Stokes equations for low Reynolds number flow in a cylinder past an adherent sphere, we have developed a dimensionless correlation which permits the estimation of the pressure drop across an adherent leukocyte in an in vivo vessel. This relationship is: f.Re = exp[2.877+4.630 (d/D)4] where f is the Fanning friction factor, Re is the Reynolds number and d/D is the leukocyte to vessel diameter ratio. The friction factor is proportional to the pressure drop across the leukocyte, and does not significantly increase until d/D is greater than 0.5, and then increases rapidly with increasing d/D. Computations indicate that the length of the disturbed flow region generated by an adherent leukocyte increases with decreasing vessel size. The average wall stress in the disturbed flow region remains constant, and equal to the wall stress in the undisturbed region for d/D less than approximately 0.5. For d/D greater than 0.5, the average wall stress in the disturbed flow region increases rapidly with increasing d/D. There is an even larger increase, up to five times greater than the average disturbed stress, in the peak wall stress in the disturbed flow region. This indicates that significant wall stress gradients can be generated by an adherent leukocyte in post-capillary size vessels.

摘要

采用计算流体动力学(CFD)和大规模模型实验来分析黏附于毛细血管后微静脉壁上的白细胞对血液动力学的影响。我们使用一个大规模模型,并借助有限元软件包,求解圆柱体中低雷诺数流动绕过一个黏附球体时的纳维-斯托克斯方程,从而得出了一个无量纲关联式,该关联式可用于估算体内血管中黏附白细胞两端的压降。此关系式为:f.Re = exp[2.877 + 4.630 (d/D)4],其中f为范宁摩擦系数,Re为雷诺数,d/D为白细胞与血管直径之比。摩擦系数与白细胞两端的压降成正比,在d/D大于0.5之前不会显著增加,之后随d/D增大而迅速增加。计算结果表明,黏附白细胞产生的扰动流区域长度随血管尺寸减小而增加。对于d/D小于约0.5的情况,扰动流区域的平均壁面切应力保持恒定,且等于未扰动区域的壁面切应力。对于d/D大于0.5的情况,扰动流区域的平均壁面切应力随d/D增大而迅速增加。扰动流区域的峰值壁面切应力甚至会有更大幅度的增加,比平均扰动应力大五倍之多。这表明黏附于毛细血管大小血管中的白细胞可产生显著的壁面切应力梯度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验