McEwen B F, Heagle A B, Cassels G O, Buttle K F, Rieder C L
Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Albany, New York 12201-0509, USA.
J Cell Biol. 1997 Jun 30;137(7):1567-80. doi: 10.1083/jcb.137.7.1567.
Kinetochore microtubules (kMts) are a subset of spindle microtubules that bind directly to the kinetochore to form the kinetochore fiber (K-fiber). The K-fiber in turn interacts with the kinetochore to produce chromosome motion toward the attached spindle pole. We have examined K-fiber maturation in PtK1 cells using same-cell video light microscopy/serial section EM. During congression, the kinetochore moving away from its spindle pole (i.e., the trailing kinetochore) and its leading, poleward moving sister both have variable numbers of kMts, but the trailing kinetochore always has at least twice as many kMts as the leading kinetochore. A comparison of Mt numbers on sister kinetochores of congressing chromosomes with their direction of motion, as well as distance from their associated spindle poles, reveals that the direction of motion is not determined by kMt number or total kMt length. The same result was observed for oscillating metaphase chromosomes. These data demonstrate that the tendency of a kinetochore to move poleward is not positively correlated with the kMt number. At late prometaphase, the average number of Mts on fully congressed kinetochores is 19.7 +/- 6.7 (n = 94), at late metaphase 24.3 +/- 4.9 (n = 62), and at early anaphase 27.8 +/- 6.3 (n = 65). Differences between these distributions are statistically significant. The increased kMt number during early anaphase, relative to late metaphase, reflects the increased kMt stability at anaphase onset. Treatment of late metaphase cells with 1 microM taxol inhibits anaphase onset, but produces the same kMt distribution as in early anaphase: 28.7 +/- 7. 4 (n = 54). Thus, a full complement of kMts is not sufficient to induce anaphase onset. We also measured the time course for kMt acquisition and determined an initial rate of 1.9 kMts/min. This rate accelerates up to 10-fold during the course of K-fiber maturation, suggesting an increased concentration of Mt plus ends in the vicinity of the kinetochore at late metaphase and/or cooperativity for kMt acquisition.
动粒微管(kMts)是纺锤体微管的一个子集,它直接与动粒结合形成动粒纤维(K纤维)。K纤维进而与动粒相互作用,使染色体向附着的纺锤体极移动。我们使用同细胞视频光学显微镜/连续切片电子显微镜研究了PtK1细胞中的K纤维成熟过程。在染色体排列到赤道板的过程中,远离纺锤体极移动的动粒(即滞后动粒)及其向前、向极移动的姐妹动粒的kMts数量都各不相同,但滞后动粒的kMts数量总是至少是向前动粒的两倍。将排列到赤道板的染色体的姐妹动粒上的微管数量与其运动方向以及到相关纺锤体极的距离进行比较,发现运动方向并非由kMt数量或总kMt长度决定。对于振荡的中期染色体也观察到了相同的结果。这些数据表明,动粒向极移动的趋势与kMt数量没有正相关关系。在有丝分裂前期末期,完全排列到赤道板的动粒上微管的平均数量为19.7±6.7(n = 94),在中期后期为24.3±4.9(n = 62),在后期前期为27.8±6.3(n = 65)。这些分布之间的差异具有统计学意义。相对于中期后期,后期前期kMt数量的增加反映了后期开始时kMt稳定性的增加。用1微摩尔/升紫杉醇处理中期后期细胞会抑制后期开始,但产生的kMt分布与后期前期相同:28.7±7.4(n = 54)。因此,完整的kMts补充不足以诱导后期开始。我们还测量了kMt获取的时间进程,并确定初始速率为1.9个kMts/分钟。在K纤维成熟过程中,这个速率加快了多达10倍,这表明在中期后期动粒附近微管正端的浓度增加和/或kMt获取具有协同作用。