Suppr超能文献

Expression and localization of Na+/H+ exchangers in rat central nervous system.

作者信息

Ma E, Haddad G G

机构信息

Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, U.S.A.

出版信息

Neuroscience. 1997 Jul;79(2):591-603. doi: 10.1016/s0306-4522(96)00674-4.

Abstract

Neurons in the central nervous system regulate their intracellular pH using particular membrane proteins of which two, namely the Na+-dependent Cl-/HCO3- exchanger and the Na+/H+ exchanger, are essential. In this study we examined messenger RNA expression and distribution of Na+/H+ exchanger in the newborn rat central nervous system and with maturation using Northern blot analysis and in situ hybridization. Our study clearly shows that each Na+/H+ exchanger has a different expression pattern in the rat central nervous system. As in non-excitable tissues, Na+/H+ exchanger 1 is by far the most abundant of all Na+/H+ exchangers in the rat central nervous system. Its expression is ubiquitous although its messenger RNA appears at higher levels in the hippocampus, in the 2nd/3rd layers of periamygdaloid cortex and in the cerebellum. The low level of messenger RNAs encoding Na+/H+ exchanger 2 and 4 is mainly expressed in the cerebral cortex and in the brainstem-diencephalon, while Na+/H+ exchanger 3 transcripts are found only in the cerebellar Purkinje cells. From a developmental point of view, Na+/H+ exchanger 1, 2 and 4 showed an increased level in their transcripts in the cerebral cortex while an opposite trend existed in the cerebellum from postnatal day 0 to postnatal day 30. The messenger RNA for Na+/H+ exchanger 3, however, increased its level with age in cerebellum. From our data we conclude that: i) the expression of the Na+/H+ exchanger is age-, region-, and subtype-specific, with Na+/H+ exchanger 1 being the most prevalent in the rat central nervous system; ii) specialization of groups of neurons with respect to the type of Na+/H+ exchanger is clearly illustrated by Na+/H+ exchanger 3 which is almost totally localized in cerebellar Purkinje cells; and iii) the developmental increase in the messenger RNA for Na+/H+ exchanger 1 in the cerebral cortex and hippocampus is consistent with our previous studies on intracellular pH physiology in neonatal and mature neurons. Together this study indicates that expression of each Na+/H+ exchanger messenger RNA is differentially regulated both during development and in the different regions of rat central nervous system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验