Boess F G, Steward L J, Steele J A, Liu D, Reid J, Glencorse T A, Martin I L
Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Neuropharmacology. 1997 Apr-May;36(4-5):637-47. doi: 10.1016/s0028-3908(97)00044-0.
The 5-HT3 receptor is a ligand-gated ion channel with significant structural similarity to the nicotinic acetylcholine receptor. Several regions that form the ligand binding site in the nicotinic acetylcholine receptor are partially conserved in the 5-HT3 receptor, presumably reflecting the conserved signal transduction mechanism. Specific amino acid differences in these regions may account for their distinct ligand recognition properties. Using site-directed mutagenesis, we have replaced one of these residues, glutamate 106 (E106), with aspartate (D), asparagine (N), alanine (A) or glutamine (Q) and characterized the ligand-binding and electrophysiological properties of the mutant receptors after transient expression in HEK-293 cells. The affinity for the selective 5-HT3 receptor antagonist [3H]GR65630 was decreased 14-fold in the mutant E106D (Kd = 3.69 +/- 0.32 nM) when compared to wildtype (WT, E106) 5-HT3 receptor (0.27 +/- 0.03 nM), while the affinity for E106N was unchanged (0.42 +/- 0.07 nM, means +/- SEM, n = 3-10). Decreased affinities for both E106D and E106N were observed for the antagonists granisetron, ondansetron and renzapride and for the agonists 5-HT (130- and 30-fold) and 2-methyl-5-HT (250- and 20-fold), respectively. Both mutants still formed 5-HT-activatable ion channels, but the high Hill coefficient of the concentration effect curves in wildtype (2.0) was decreased to unity in both cases. The EC50 of 5-HT was increased seven-fold in E106N (8.7 microM) when compared to wildtype (1.2 microM), but unchanged in E106D, and the potency of the antagonist ondansetron for both mutants was decreased. E106A and E106Q expressed poorly preventing a detailed characterization. These data suggest that E106 contributes to the ligand-binding site of the 5-HT3 receptor and may form an ionic or hydrogen bond interaction with the primary ammonium group of 5-HT.
5-羟色胺3(5-HT3)受体是一种配体门控离子通道,与烟碱型乙酰胆碱受体在结构上有显著相似性。在烟碱型乙酰胆碱受体中形成配体结合位点的几个区域在5-HT3受体中部分保守,这大概反映了保守的信号转导机制。这些区域中特定的氨基酸差异可能解释了它们不同的配体识别特性。我们利用定点诱变技术,将其中一个残基谷氨酸106(E106)分别替换为天冬氨酸(D)、天冬酰胺(N)、丙氨酸(A)或谷氨酰胺(Q),并在HEK-293细胞中瞬时表达后,对突变受体的配体结合和电生理特性进行了表征。与野生型(WT,E106)5-HT3受体(0.27±0.03 nM)相比,突变体E106D对选择性5-HT3受体拮抗剂[3H]GR65630的亲和力降低了14倍(Kd = 3.69±0.32 nM),而E106N的亲和力未变(0.42±0.07 nM,均值±标准误,n = 3 - 10)。对于拮抗剂格拉司琼、昂丹司琼和瑞扎曲普坦以及激动剂5-羟色胺(分别为130倍和3倍)和2-甲基-5-羟色胺(分别为250倍和20倍),观察到E106D和E106N的亲和力均降低。两种突变体仍能形成5-羟色胺激活的离子通道,但野生型浓度效应曲线的高希尔系数(2.0)在两种情况下均降至1。与野生型(1.2 microM)相比,E106N中5-羟色胺的半数有效浓度(EC50)增加了7倍(8.7 microM),但E106D中未变,并且两种突变体中拮抗剂昂丹司琼的效力均降低。E106A和E106Q表达不佳,无法进行详细表征。这些数据表明,E106对5-HT3受体的配体结合位点有贡献,并且可能与5-羟色胺的伯铵基团形成离子键或氢键相互作用。