Single S, Haag J, Borst A
Friedrich-Miescher-Laboratory, Max-Planck-Society, D-72076 Tuebingen, Germany.
J Neurosci. 1997 Aug 15;17(16):6023-30. doi: 10.1523/JNEUROSCI.17-16-06023.1997.
The extraction of motion information from time varying retinal images is a fundamental task of visual systems. Accordingly, neurons that selectively respond to visual motion are found in almost all species investigated so far. Despite its general importance, the cellular mechanisms underlying direction selectivity are not yet understood in most systems. Blocking inhibitory input to fly visual interneurons by picrotoxinin (PTX), we demonstrate that their direction selectivity arises largely from interactions between postsynaptic signals elicited by excitatory and inhibitory input elements, which are themselves only weakly tuned to opposite directions of motion. Their joint activation by preferred as well as null direction motion leads to a mixed reversal potential at which the postsynaptic response settles for large field stimuli. Assuming the activation ratio of these opponent inputs to be a function of pattern velocity can explain how the postsynaptic membrane potential saturates with increasing pattern size at different levels for different pattern velocities ("gain control"). Accordingly, we find that after blocking the inhibitory input by PTX, gain control is abolished.
从随时间变化的视网膜图像中提取运动信息是视觉系统的一项基本任务。因此,在迄今为止研究的几乎所有物种中都发现了对视觉运动有选择性反应的神经元。尽管其具有普遍重要性,但在大多数系统中,方向选择性背后的细胞机制仍未被理解。通过印防己毒素(PTX)阻断果蝇视觉中间神经元的抑制性输入,我们证明它们的方向选择性很大程度上源于兴奋性和抑制性输入元件引发的突触后信号之间的相互作用,而这些输入元件本身对相反运动方向的调谐很弱。它们被偏好方向以及零方向运动共同激活会导致一个混合反转电位,在这个电位下,突触后反应会在大视野刺激时稳定下来。假设这些对抗性输入的激活比率是模式速度的函数,可以解释突触后膜电位如何在不同模式速度下随着模式大小的增加在不同水平饱和(“增益控制”)。因此,我们发现用PTX阻断抑制性输入后,增益控制被消除。