Borst A, Egelhaaf M, Haag J
Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany.
J Comput Neurosci. 1995 Mar;2(1):5-18. doi: 10.1007/BF00962705.
In the compensatory optomotor response of the fly the interesting phenomenon of gain control has been observed by Reichardt and colleagues (Reichardt et al., 1983): The amplitude of the response tends to saturate with increasing stimulus size, but different saturation plateaus are assumed with different velocities at which the stimulus is moving. This characteristic can already be found in the motion-sensitive large field neurons of the fly optic lobes that play a role in mediating this behavioral response (Hausen, 1982; Reichardt et al., 1983; Egelhaaf, 1985; Haag et al., 1992). To account for gain control a model was proposed involving shunting inhibition of these cells by another cell, the so-called pool cell (Reichardt et al., 1983), both cells sharing common input from an array of local motion detectors. This article describes an alternative model which only requires dendritic integration of the output signals of two types of local motion detectors with opposite polarity. The explanation of gain control relies on recent findings that these input elements are not perfectly directionally selective and that their direction selectivity is a function of pattern velocity. As a consequence, the resulting postsynaptic potential in the dendrite of the integrating cell saturates with increasing pattern size at a level between the excitatory and inhibitory reversal potentials. The exact value of saturation is then set by the activation ratio of excitatory and inhibitory input elements which in turn is a function of other stimulus parameters such as pattern velocity. Thus, the apparently complex phenomenon of gain control can be simply explained by the biophysics of dendritic integration in conjunction with the properties of the motion-sensitive input elements.
在果蝇的代偿性视动反应中,赖夏德特及其同事(赖夏德特等人,1983年)观察到了增益控制这一有趣现象:反应幅度倾向于随着刺激大小的增加而饱和,但对于刺激移动的不同速度,会呈现出不同的饱和平台。这种特性已经可以在果蝇视叶中对介导这种行为反应起作用的运动敏感大场神经元中发现(豪森,1982年;赖夏德特等人,1983年;埃格尔哈夫,1985年;哈格等人,1992年)。为了解释增益控制,提出了一个模型,该模型涉及另一种细胞(即所谓的池细胞)对这些细胞的分流抑制(赖夏德特等人,1983年),这两种细胞共享来自一系列局部运动探测器的共同输入。本文描述了另一种模型,该模型仅需要对具有相反极性的两种局部运动探测器的输出信号进行树突整合。增益控制的解释依赖于最近的发现,即这些输入元件并非完美的方向选择性,并且它们的方向选择性是模式速度的函数。因此,整合细胞树突中产生的突触后电位会随着模式大小的增加而在兴奋性和抑制性反转电位之间的某个水平饱和。饱和的精确值随后由兴奋性和抑制性输入元件的激活率设定,而激活率又是其他刺激参数(如模式速度)的函数。因此,增益控制这一明显复杂的现象可以通过树突整合的生物物理学结合运动敏感输入元件的特性得到简单解释。