Schwienhorst A, Schober A, Günther R, Stadler P F
Institute for Molecular Biotechnology, Jena, Germany.
Mol Divers. 1996 May;1(3):187-92. doi: 10.1007/BF01544957.
Selection of molecules with desired properties from random pools of biopolymers has become a powerful tool in biotechnology. On designing an evolution experiment, a certain knowledge of the concomitant fitness landscape is clearly helpful to set up the optimal experimental conditions. The correlation function is a useful means of characterizing a given landscape, since it can be efficiently measured if one has a method of separating a pool of random sequences according to their Hamming distance from a moderately small number of test sequences. In this paper we describe a special type of hybridization chromatography, where a mixture of oligomers (partially) complementary to a given test sequence is hybridized to the test sequence, covalently bound to a matrix. DNA oligomers are eluted in an 'effective temperature gradient' using conditions that minimize the differences of effects of GC versus AT pairs on the melting temperatures. This method should be a means to quickly separate error classes and thus be the crucial step in characterizing fitness landscapes of biopolymers through an experimental approach. It would also be a useful tool to design sequence pools with a bias towards desired mutant spectra.
从生物聚合物的随机文库中筛选具有所需特性的分子已成为生物技术中的一种强大工具。在设计进化实验时,对伴随的适应度景观有一定了解显然有助于设定最佳实验条件。相关函数是表征给定景观的一种有用方法,因为如果有一种方法可以根据与少量测试序列的汉明距离来分离随机序列库,那么就可以有效地测量它。在本文中,我们描述了一种特殊类型的杂交色谱法,其中与给定测试序列(部分)互补的寡聚物混合物与测试序列杂交,该测试序列共价结合到基质上。使用能使GC对与AT对在解链温度上的影响差异最小化的条件,DNA寡聚物在“有效温度梯度”中被洗脱。这种方法应该是快速分离错误类别的一种手段,因此是通过实验方法表征生物聚合物适应度景观的关键步骤。它也是设计偏向所需突变谱的序列库的有用工具。