Suppr超能文献

Improved solvent suppression and increased spatial excitation bandwidths for three-dimensional PRESS CSI using phase-compensating spectral/spatial spin-echo pulses.

作者信息

Star-Lack J, Vigneron D B, Pauly J, Kurhanewicz J, Nelson S J

机构信息

Department of Radiology, University of California, San Francisco 94143-1290, USA.

出版信息

J Magn Reson Imaging. 1997 Jul-Aug;7(4):745-57. doi: 10.1002/jmri.1880070422.

Abstract

Dual phase-compensating spectral/spatial echo-planar (EP) spin-echo (SE) pulses were incorporated into the point resolved spectroscopy (PRESS) excitation sequence to improve water and lipid suppression for 1H chemical shift imaging (CSI) and to decrease the dependence of the PRESS box location upon chemical shift. The asymmetric EPSE pulses (either minimum or maximum phase in the chemical shift domain) were substituted for the two PRESS SE pulses to yield zero phase spectra. Three different pulses were designed and tested at 1.5 T. Pulse 1, targeted for brain CSI (TE > 85 msec), passed choline to lipid resonances, suppressed water, and rephased the methyl lactate doublet independently of TE. Pulse 2, targeted for general purpose shorter TE PRESS, possessed both high chemical shift and spatial domain bandwidths. Pulse 3, designed for prostate CSI, passed choline to citrate resonances while suppressing lipids and water. The three pulses possessed spatial bandwidths ranging between 3.3 and 5.0 kHz, more than three times higher than that offered by one-dimensional SE pulses of equivalent maximum B1 amplitude. Phantom and in vivo experimental results demonstrated that, for EPSE pulses 1 and 2, suppression factors higher than 10(4) were achieved. The increased spatial bandwidths resulted in less contamination by signals from outside the designated PRESS excited region and a significant improvement in the uniformity of metabolite intensities for voxels located near edges of the PRESS box.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验