Suppr超能文献

快速体内 1H 和超极化 13C MR 波谱成像的策略。

Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging.

机构信息

Surbeck Laboratory for Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158-2330, USA.

出版信息

J Magn Reson. 2013 Apr;229:187-97. doi: 10.1016/j.jmr.2013.02.003. Epub 2013 Feb 8.

Abstract

In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D (1)H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for (1)H MRSI at 7 T and to using ultrafast volumetric and dynamic (13)C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized (13)C agents.

摘要

体内磁共振波谱成像(MRSI)是一种重要的成像方式,在许多研究中已经证明,它可以提供有关疾病潜在机制的生物学相关信息,并监测治疗反应。高磁场扫描仪和多通道射频线圈的日益普及为获取具有更高灵敏度和信噪比的体内数据提供了机会。这些功能可用于缩短采集时间并提供更大的覆盖范围。能够获取快速、容积式 MRSI 数据对于检查代谢谱的异质性以及在疾病过程中同一患者的代谢变化的相关性至关重要。在这篇综述中,我们讨论了使用替代 k 空间采样轨迹和并行成像方法来加速数据采集的策略的实施。使用三个最近的示例展示了这些方法的影响,这些示例分别是在 3T 场强下在 5-10 分钟内获取稳健的 3D(1)H MRSI 数据、在 7T 下获得更高的(1)H MRSI 灵敏度以及使用超快容积式和动态(13)C MRSI 监测注射超极化(13)C 试剂后信号的变化。

相似文献

1
Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging.
J Magn Reson. 2013 Apr;229:187-97. doi: 10.1016/j.jmr.2013.02.003. Epub 2013 Feb 8.
3
Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI.
J Magn Reson. 2008 Jun;192(2):258-64. doi: 10.1016/j.jmr.2008.03.003. Epub 2008 Mar 18.
4
Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging.
J Magn Reson Imaging. 2014 Jan;39(1):224-34. doi: 10.1002/jmri.24130. Epub 2013 Apr 4.
5
Fast data acquisition techniques in magnetic resonance spectroscopic imaging.
NMR Biomed. 2019 Mar;32(3):e4046. doi: 10.1002/nbm.4046. Epub 2019 Jan 14.
6
High spatial resolution and speed in MRSI.
NMR Biomed. 1997 Dec;10(8):411-22. doi: 10.1002/(sici)1099-1492(199712)10:8<411::aid-nbm496>3.0.co;2-8.
7
Enhanced hyperpolarized chemical shift imaging based on a priori segmented information.
Magn Reson Med. 2019 May;81(5):3080-3093. doi: 10.1002/mrm.27631. Epub 2019 Jan 16.
8
In vivo hyperpolarized 13C MR spectroscopic imaging with 1H decoupling.
J Magn Reson. 2009 Mar;197(1):100-6. doi: 10.1016/j.jmr.2008.12.004. Epub 2008 Dec 13.
9
Simultaneous metabolic and functional imaging of the brain using SPICE.
Magn Reson Med. 2019 Dec;82(6):1993-2002. doi: 10.1002/mrm.27865. Epub 2019 Jul 11.

引用本文的文献

1
Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T.
Tomography. 2023 Aug 23;9(5):1592-1602. doi: 10.3390/tomography9050127.
2
Evaluation of deep learning models for quality control of MR spectra.
Front Neurosci. 2023 Aug 29;17:1219343. doi: 10.3389/fnins.2023.1219343. eCollection 2023.
3
Advanced MR Techniques for Preoperative Glioma Characterization: Part 2.
J Magn Reson Imaging. 2023 Jun;57(6):1676-1695. doi: 10.1002/jmri.28663. Epub 2023 Mar 13.
6
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
7
Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei.
MAGMA. 2020 Apr;33(2):221-256. doi: 10.1007/s10334-019-00807-6. Epub 2019 Dec 6.
8
Methodological consensus on clinical proton MRS of the brain: Review and recommendations.
Magn Reson Med. 2019 Aug;82(2):527-550. doi: 10.1002/mrm.27742. Epub 2019 Mar 28.
9
Reliable and Reproducible GABA Measurements Using Automated Spectral Prescription at Ultra-High Field.
Front Hum Neurosci. 2017 Oct 25;11:506. doi: 10.3389/fnhum.2017.00506. eCollection 2017.
10
Imaging of pH in vivo using hyperpolarized C-labelled zymonic acid.
Nat Commun. 2017 May 11;8:15126. doi: 10.1038/ncomms15126.

本文引用的文献

3
Spin-echo magnetic resonance spectroscopic imaging at 7 T with frequency-modulated refocusing pulses.
Magn Reson Med. 2013 May;69(5):1217-25. doi: 10.1002/mrm.24357. Epub 2012 Jun 12.
4
Automated prescription of oblique brain 3D magnetic resonance spectroscopic imaging.
Magn Reson Med. 2013 Apr;69(4):920-30. doi: 10.1002/mrm.24339. Epub 2012 Jun 12.
5
SPECIAL semi-LASER with lipid artifact compensation for 1H MRS at 7 T.
Magn Reson Med. 2013 Mar 1;69(3):603-12. doi: 10.1002/mrm.24292. Epub 2012 Apr 19.
6
Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla.
Magn Reson Med. 2012 Oct;68(4):1007-17. doi: 10.1002/mrm.24122. Epub 2011 Dec 28.
7
Neurologic 3D MR spectroscopic imaging with low-power adiabatic pulses and fast spiral acquisition.
Radiology. 2012 Feb;262(2):647-61. doi: 10.1148/radiol.11110277. Epub 2011 Dec 20.
8
Multislice ¹H MRSI of the human brain at 7 T using dynamic B₀ and B₁ shimming.
Magn Reson Med. 2012 Sep;68(3):662-70. doi: 10.1002/mrm.23288. Epub 2011 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验