Suppr超能文献

药物预防研究中缺失数据的分析。

Analysis with missing data in drug prevention research.

作者信息

Graham J W, Hofer S M, Piccinin A M

机构信息

College of Health and Human Development, Pennsylvania State University, University Park 16802-6504, USA.

出版信息

NIDA Res Monogr. 1994;142:13-63.

PMID:9243532
Abstract

Missing data problems have been a thorn in the side of prevention researchers for years. Although some solutions for these problems have been available in the statistical literature, these solutions have not found their way into mainstream prevention research. This chapter is meant to serve as an introduction to the systematic application of the missing data analysis solutions presented recently by Little and Rubin (1987) and others. The chapter does not describe a complete strategy, but it is relevant for (1) missing data analysis with continuous (but not categorical) data, (2) data that are reasonably normally distributed, and (3) solutions for missing data problems for analyses related to the general linear model in particular, analyses that use (or can use) a covariance matrix as input. The examples in the chapter come from drug prevention research. The chapter discusses (1) the problem of wanting to ask respondents more questions than most individuals can answer; (2) the problem of attrition and some solutions; and (3) the problem of special measurement procedures that are too expensive or time consuming to obtain for all subjects. The authors end with several conclusions: Whenever possible, researchers should use the Expectation-Maximization (EM) algorithm (or other maximum likelihood procedure, including the multiple-group structural equation-modeling procedure or, where appropriate, multiple imputation, for analyses involving missing data [the chapter provides concrete examples]); If researchers must use other analyses, they should keep in mind that these others produce biased results and should not be relied upon for final analyses; When data are missing, the appropriate missing data analysis procedures do not generate something out of nothing but do make the most out of the data available; When data are missing, researchers should work hard (especially when planning a study) to find the cause of missingness and include the cause in the analysis models; and Researchers should sample the cases originally missing (whenever possible) and adjust EM algorithm parameter estimates accordingly.

摘要

多年来,数据缺失问题一直困扰着预防研究人员。尽管统计文献中已经有一些针对这些问题的解决方案,但这些方案尚未进入主流预防研究领域。本章旨在介绍Little和Rubin(1987)等人最近提出的缺失数据分析解决方案的系统应用。本章并未描述完整的策略,但它适用于:(1)对连续(而非分类)数据进行缺失数据分析;(2)数据呈合理正态分布;(3)特别是针对与一般线性模型相关分析的缺失数据问题的解决方案,即使用(或可使用)协方差矩阵作为输入的分析。本章中的示例来自药物预防研究。本章讨论了:(1)想问受访者的问题比大多数人能回答的问题更多这一问题;(2)失访问题及一些解决方案;(3)特殊测量程序对于所有受试者来说成本过高或耗时过长而无法获得这一问题。作者最后得出了几个结论:只要有可能,研究人员应使用期望最大化(EM)算法(或其他最大似然程序,包括多组结构方程建模程序,或在适当情况下进行多重插补,用于涉及缺失数据的分析[本章提供了具体示例]);如果研究人员必须使用其他分析方法,他们应牢记这些方法会产生有偏差的结果,不应依赖它们进行最终分析;当数据缺失时,适当的缺失数据分析程序并非无中生有,而是要充分利用现有数据;当数据缺失时,研究人员应努力(尤其是在规划研究时)找出数据缺失的原因,并将其纳入分析模型;研究人员应尽可能对最初缺失的案例进行抽样,并相应调整EM算法参数估计值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验