Suppr超能文献

使用广义估计方程的物质使用临床试验的纵向缺失数据策略:以丁丙诺啡试验为例

Longitudinal missing data strategies for substance use clinical trials using generalized estimating equations: an example with a buprenorphine trial.

作者信息

McPherson Sterling, Barbosa-Leiker Celestina, McDonell Michael, Howell Donelle, Roll John

机构信息

College of Nursing, Washington State University, Spokane, Washington, USA; Department of Psychology, Washington State University, Pullman, Washington, USA; Program of Excellence in the Addictions, Washington State University, Spokane, Washington, USA; Program for Rural Mental Health and Substance Abuse Treatment, Washington State University, Spokane, Washington, USA; Translational Addictions Research Center, Washington State University, Spokane, Washington, USA.

出版信息

Hum Psychopharmacol. 2013 Sep;28(5):506-15. doi: 10.1002/hup.2339.

Abstract

OBJECTIVE

A review of substance use clinical trials indicates that sub-optimal methods are the most commonly used procedures to deal with longitudinal missing information.

METHODS

Listwise deletion (i.e., using complete cases only), positive urine analysis (UA) imputation, and multiple imputation (MI) were used to evaluate the effect of baseline substance use and buprenorphine/naloxone tapering schedule (7 or 28 days) on the probability of a positive UA (UA+) across the 4-week treatment period.

RESULTS

The listwise deletion generalized estimating equations (GEE) model demonstrated that those in the 28-day taper group were less likely to submit a UA+ for opioids during the treatment period (odds ratios (OR) = 0.57, 95% confidence interval (CI): 0.39-0.83), as did the positive UA imputation model (OR = 0.43, CI: 0.34-0.55). The MI model also demonstrated a similar effect of taper group (OR = 0.57, CI: 0.42-0.77), but the effect size was more similar to that of the listwise deletion model.

CONCLUSIONS

Future researchers may find utilization of the MI procedure in conjunction with the common method of GEE analysis as a helpful analytic approach when the missing at random assumption is justifiable.

摘要

目的

对物质使用临床试验的回顾表明,次优方法是处理纵向缺失信息最常用的程序。

方法

采用删除法(即仅使用完整病例)、阳性尿液分析(UA)插补法和多重插补法(MI),以评估基线物质使用情况和丁丙诺啡/纳洛酮逐渐减量方案(7天或28天)对4周治疗期内尿液分析呈阳性(UA+)概率的影响。

结果

删除法广义估计方程(GEE)模型表明,28天逐渐减量组的患者在治疗期间提交阿片类药物UA+的可能性较小(优势比(OR)=0.57,95%置信区间(CI):0.39 - 0.83),阳性UA插补模型也是如此(OR = 0.43,CI:0.34 - 0.55)。MI模型也显示了逐渐减量组的类似效果(OR = 0.57,CI:0.42 - 0.77),但效应大小与删除法模型更相似。

结论

当随机缺失假设合理时,未来的研究人员可能会发现将MI程序与GEE分析的常用方法结合使用是一种有用的分析方法。

相似文献

2
Missing data in substance abuse treatment research: current methods and modern approaches.
Exp Clin Psychopharmacol. 2012 Jun;20(3):243-50. doi: 10.1037/a0027146. Epub 2012 Feb 13.
4
Imputation strategies for missing binary outcomes in cluster randomized trials.
BMC Med Res Methodol. 2011 Feb 16;11:18. doi: 10.1186/1471-2288-11-18.
5
Attrition in longitudinal studies. How to deal with missing data.
J Clin Epidemiol. 2002 Apr;55(4):329-37. doi: 10.1016/s0895-4356(01)00476-0.
7
Analysis of incomplete longitudinal binary data using multiple imputation.
Stat Med. 2006 Jun 30;25(12):2107-24. doi: 10.1002/sim.2343.
8
An overview of practical approaches for handling missing data in clinical trials.
J Biopharm Stat. 2009 Nov;19(6):1055-73. doi: 10.1080/10543400903242795.
9
Doubly robust and multiple-imputation-based generalized estimating equations.
J Biopharm Stat. 2011 Mar;21(2):202-25. doi: 10.1080/10543406.2011.550096.
10
Analysis of longitudinal clinical trials with missing data using multiple imputation in conjunction with robust regression.
Biometrics. 2012 Dec;68(4):1250-9. doi: 10.1111/j.1541-0420.2012.01780.x. Epub 2012 Sep 20.

引用本文的文献

3
Empirically contrasting urine drug screening-based opioid use disorder treatment outcome definitions.
Addiction. 2024 Jul;119(7):1289-1300. doi: 10.1111/add.16494. Epub 2024 Apr 14.
9
Parallel modeling of pain and depression in prediction of relapse during buprenorphine and naloxone treatment: A finite mixture model.
Drug Alcohol Depend. 2020 Apr 1;209:107940. doi: 10.1016/j.drugalcdep.2020.107940. Epub 2020 Feb 26.

本文引用的文献

1
2
Duration effects in contingency management treatment of methamphetamine disorders.
Addict Behav. 2013 Sep;38(9):2455-62. doi: 10.1016/j.addbeh.2013.03.018. Epub 2013 Apr 3.
4
Missing data in substance abuse treatment research: current methods and modern approaches.
Exp Clin Psychopharmacol. 2012 Jun;20(3):243-50. doi: 10.1037/a0027146. Epub 2012 Feb 13.
5
Modeling missing binary outcome data in a successful web-based smokeless tobacco cessation program.
Addiction. 2010 Jun;105(6):1005-15. doi: 10.1111/j.1360-0443.2009.02896.x. Epub 2010 Feb 8.
6
Stereotyping and the treatment of missing data for drug and alcohol clinical trials.
Subst Abuse Treat Prev Policy. 2009 Feb 18;4:2. doi: 10.1186/1747-597X-4-2.
7
Buprenorphine tapering schedule and illicit opioid use.
Addiction. 2009 Feb;104(2):256-65. doi: 10.1111/j.1360-0443.2008.02455.x.
8
Missing data analysis: making it work in the real world.
Annu Rev Psychol. 2009;60:549-76. doi: 10.1146/annurev.psych.58.110405.085530.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验