Uebersax J S
Department of Public Health Sciences, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1063, USA.
NIDA Res Monogr. 1994;142:64-80.
This chapter discusses use of latent class analysis (LCA) as a tool for identifying substance use patterns in cross-sectional data. LCA serves as an exploratory and data reduction tool that helps clarify the nature of substance use and may provide insight concerning effective prevention strategies. LCA is well suited to categorical data such as typically are collected in substance use research. Use of LCA can be divided into three steps: (1) model comparison and selection, (2) assignment of cases to latent classes, and (3) interpretation of the latent classes. Quantitative indices of model fit may assist model comparison and selection. Latent classes can be interpreted by examining probabilities of substance use in each latent class and by examining differences on exogenous variables. Limitations, extensions, and software for LCA are discussed. An example illustrates use of LCA with actual data collected from a current substance abuse prevention study.
本章讨论了使用潜在类别分析(LCA)作为一种工具,来识别横断面数据中的物质使用模式。LCA作为一种探索性和数据简化工具,有助于阐明物质使用的本质,并可能为有效的预防策略提供见解。LCA非常适合于分类数据,如通常在物质使用研究中收集的数据。LCA的使用可分为三个步骤:(1)模型比较与选择,(2)将案例分配到潜在类别,以及(3)对潜在类别的解释。模型拟合的定量指标可能有助于模型比较与选择。潜在类别可以通过检查每个潜在类别中物质使用的概率以及通过检查外生变量上的差异来进行解释。还讨论了LCA的局限性、扩展和软件。一个例子说明了LCA在从当前物质滥用预防研究中收集的实际数据中的使用情况。