Suppr超能文献

用于单次试验脑电图分类的自适应自回归建模。

Adaptive autoregressive modeling used for single-trial EEG classification.

作者信息

Schlögl A, Flotzinger D, Pfurtscheller G

出版信息

Biomed Tech (Berl). 1997 Jun;42(6):162-7. doi: 10.1515/bmte.1997.42.6.162.

Abstract

An adaptive autoregressive (AAR) model is used for analyzing event-related EEG changes. Such an AAR model is applied to single EEG trials of three subjects, recorded over both sensorimotor areas during imagination of left and right hand movements. It is found that discrimination between both types of motor-imagery is possible using linear discriminant analysis, but the time point for optimal classification is different in each subject. For the estimation of the AAR parameters, the Least-mean-squares and the Recursive-least-squares algorithms are compared. In both methods, the update coefficient plays a key role: it determines the adaptation ratio as well as the estimation accuracy. A new method, based on minimizing the prediction error, is introduced for determining the update coefficient.

摘要

一种自适应自回归(AAR)模型用于分析与事件相关的脑电图变化。这种AAR模型应用于三名受试者的单通道脑电图试验,这些试验是在他们想象左手和右手运动时记录的双侧感觉运动区的数据。结果发现,使用线性判别分析可以区分这两种运动想象类型,但每个受试者的最佳分类时间点不同。为了估计AAR参数,对最小均方算法和递归最小二乘算法进行了比较。在这两种方法中,更新系数都起着关键作用:它决定了适应率以及估计精度。引入了一种基于最小化预测误差的新方法来确定更新系数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验