Khaitlina S, Hinssen H
Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
Biophys J. 1997 Aug;73(2):929-37. doi: 10.1016/S0006-3495(97)78125-6.
Actin cleaved by the protease from Escherichia coli A2 strain between Gly42 and Val43 (ECP-actin) is no longer polymerizable when it contains Ca2+ as a tightly bound cation, but polymerizes when Mg2+ is bound. We have investigated the interactions of gelsolin with this actin with regard to conformational changes in the actin molecule induced by the binding of gelsolin. ECP-(Ca)actin interacts with gelsolin in a manner similar to that in which it reacts with intact actin, and forms a stoichiometric 2:1 complex. Despite the nonpolymerizability of ECP-(Ca)actin, this complex can act as a nucleus for the polymerization of intact actin, thus indicating that upon interaction with gelsolin, ECP-(Ca)actin undergoes a conformational change that enables its interaction with another actin monomer. By gel filtration and fluorometry it was shown that the binding of at least one of the ECP-cleaved actins to gelsolin is considerably weaker than of intact actin, suggesting that conformational changes in subdomain 2 of actin monomer may directly or allosterically affect actin-gelsolin interactions. On the other hand, interaction with gelsolin changes the conformation of actin within the DNase I-binding loop, as indicated by inhibition of limited proteolysis of actin by ECP and subtilisin. Cross-linking experiments with gelsolin-nucleated actin filaments using N,N-phenylene-bismaleimide (which cross-links adjacent actin monomers between Cys374 and Lys191) reveal that gelsolin causes a significant increase in the yield of the 115-kDa cross-linking product, confirming the evidence that gelsolin stabilizes or changes the conformation of the C-terminal region of the actin molecule, and these changes are propagated from the capped end along the filament. These results allow us to conclude that nucleation of actin polymerization by gelsolin is promoted by conformational changes within subdomain 2 and at the C-terminus of the actin monomer.
被来自大肠杆菌A2菌株的蛋白酶在甘氨酸42和缬氨酸43之间切割的肌动蛋白(ECP - 肌动蛋白),当它含有紧密结合的阳离子Ca2+时不再能够聚合,但当结合Mg2+时则会聚合。我们已经研究了凝溶胶蛋白与这种肌动蛋白的相互作用,涉及凝溶胶蛋白结合诱导的肌动蛋白分子构象变化。ECP - (Ca)肌动蛋白与凝溶胶蛋白相互作用的方式类似于它与完整肌动蛋白的反应方式,并形成化学计量比为2:1的复合物。尽管ECP - (Ca)肌动蛋白不可聚合,但这种复合物可以作为完整肌动蛋白聚合的核,这表明与凝溶胶蛋白相互作用时,ECP - (Ca)肌动蛋白会发生构象变化,使其能够与另一个肌动蛋白单体相互作用。通过凝胶过滤和荧光测定法表明,至少一种ECP切割的肌动蛋白与凝溶胶蛋白的结合比完整肌动蛋白弱得多,这表明肌动蛋白单体亚结构域2中的构象变化可能直接或通过变构作用影响肌动蛋白 - 凝溶胶蛋白的相互作用。另一方面,如ECP和枯草杆菌蛋白酶对肌动蛋白有限蛋白水解的抑制所示,与凝溶胶蛋白的相互作用改变了肌动蛋白在DNase I结合环内的构象。使用N,N - 亚苯基双马来酰亚胺(其在半胱氨酸374和赖氨酸191之间交联相邻的肌动蛋白单体)对凝溶胶蛋白成核的肌动蛋白丝进行交联实验表明,凝溶胶蛋白会使115 kDa交联产物的产率显著增加,证实了凝溶胶蛋白稳定或改变肌动蛋白分子C末端区域构象的证据,并且这些变化从封端沿着细丝传播。这些结果使我们能够得出结论,凝溶胶蛋白促进肌动蛋白聚合的成核作用是由肌动蛋白单体亚结构域2和C末端的构象变化所推动的。