Zhang W, Cutruzzolá F, Allocatelli C T, Brunori M, La Mar G N
Department of Chemistry, University of California, Davis 95616, USA.
Biophys J. 1997 Aug;73(2):1019-30. doi: 10.1016/S0006-3495(97)78135-9.
The solution 1H NMR structure of the active site and ligand dissociation rate for the cyanomet complex have been determined for a sperm whale myoglobin triple mutant Leu29(B10)-->Tyr, His64(E7)-->Gln, Thr67(E10)-->Arg that mimics the distal residue configuration of the oxygen-avid hemoglobin from Ascaris suum. A double mutant that retains Leu29(B10) was similarly investigated. Two-dimensional NMR analysis of the iron-induced dipolar shifts, together with the conserved proximal side structure for the two mutants, allowed the determination of the orientations of the paramagnetic susceptibility tensor for each complex. The resulting magnetic axes, together with paramagnetic relaxation and steady-state NOEs, led to a quantitative description of the distal residue orientations. The distal Tyr29(B10) in the triple mutant provides a strong hydrogen bond to the bound cyanide comparable to that provided by His64(E7) in wild-type myoglobin. The distal Gln64(E7) in the triple mutant is sufficiently close to the bound cyanide to severe as a hydrogen bond donor, but the angle is not consistent with a strong hydrogen bond. Dipolar contacts between the Arg67(E10) guanidinium group and the Gln64(E7) side chain in both mutants support a hydrogen-bond to the Gln64(E7) carbonyl group. The much lower oxygen affinity of this triple mutant relative to that of Ascaris hemoglobin is concluded to arise from side-chain orientations that do not allow hydrogen bonds between the Gln64(E7) side-chain NHs and both the ligand and Tyr29(B10) hydroxyl oxygen. Cyanide dissociation rates for the reduced cyanide complexes are virtually unaffected by the mutations and are consistent with a model of the rate-determining step as the intrinsically slow Fe-C bond breaking that is largely independent of any hydrogen bonds to the cyanide nitrogen.
已确定抹香鲸肌红蛋白三重突变体Leu29(B10)→Tyr、His64(E7)→Gln、Thr67(E10)→Arg(模拟猪蛔虫嗜氧血红蛋白的远端残基构型)活性位点的溶液1H NMR结构以及氰化物配合物的配体解离速率。对保留Leu29(B10)的双突变体进行了类似研究。通过对铁诱导的偶极位移进行二维NMR分析,结合两个突变体保守的近端侧结构,确定了每个配合物顺磁磁化率张量的方向。由此得到的磁轴,连同顺磁弛豫和稳态NOE,对远端残基方向进行了定量描述。三重突变体中的远端Tyr29(B10)与结合的氰化物形成的氢键强度与野生型肌红蛋白中His64(E7)提供的氢键相当。三重突变体中的远端Gln64(E7)与结合的氰化物足够接近,可作为氢键供体,但角度与强氢键不一致。两个突变体中Arg67(E10)胍基与Gln64(E7)侧链之间的偶极接触支持与Gln64(E7)羰基形成氢键。得出结论,该三重突变体相对于猪蛔虫血红蛋白的氧亲和力低得多,是由于侧链方向不允许Gln64(E7)侧链NHs与配体和Tyr29(B10)羟基氧之间形成氢键。还原氰化物配合物的氰化物解离速率实际上不受突变影响,并且与速率决定步骤的模型一致,即本质上缓慢的Fe-C键断裂,这在很大程度上与氰化物氮的任何氢键无关。