Peterson E S, Huang S, Wang J, Miller L M, Vidugiris G, Kloek A P, Goldberg D E, Chance M R, Wittenberg J B, Friedman J M
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Biochemistry. 1997 Oct 21;36(42):13110-21. doi: 10.1021/bi971156n.
The architecture of the distal heme pocket in hemoglobins and myoglobins can play an important role in controlling ligand binding dynamics. The size and polarity of the residues occupying the distal pocket may contribute steric and dielectric effects. In vertebrate systems, the distal pocket typically contains a "distal" histidine at position E7 and a leucine at position B10. There are several invertebrate organisms that have hemoglobins or myoglobins that display a pattern in which residues E7 and B10 are a glutamine and tyrosine, respectively. These proteins often have very high oxygen affinities stemming from very slow ligand off rates. In this study, two such hemoglobins, one from the nematode Ascaris suum and the other from the sulfide-fixing clam Lucina pectinata, are compared with respect to conformational and functional properties. Ultraviolet resonance Raman spectroscopy and visible resonance Raman spectroscopy are used to probe, respectively, the ligand-dependent hydrogen bonding pattern of the tyrosine residues and the proximal heme pocket interactions. Fourier transform infrared absorption spectroscopy is used to probe the dielectric properties of the distal heme pocket through the stretching frequency of carbon monoxide bound to the heme. Functionality is probed through the geminate rebinding of both CO and O2. The findings reveal two very different patterns indicative of two different mechanisms for achieving low oxygen off rates. In Hb Ascaris, a hydrogen bonding network that includes the E7 Gln, B10 Tyr, and oxygen bound to the heme results in a tight cage for the oxygen. Dissociation of the O2 requires a large amplitude conformational fluctuation that results both in a spontaneous dissociation of the oxygen through the loss of hydrogen bond stabilization and in an enhanced probability for ligand escape though the transient disruption and opening of the tight distal cage. In the case of the Hb from Lucina, there is no evidence for a tight cage. Instead the data support a model in which the hydrogen bonding network is far more tenuous and the equilibrium state of distal pocket is far more open and accessible than is the case in Ascaris. The results explain why Hb Ascaris has one of the highest oxygen affinities known (P50 approximately 10(-)3 Torr) while Hb Lucina II has an oxygen affinity comparable to that of Mb (P50 = 0.13 Torr) even though both of these Hbs contain the B10 Tyr and E7 Gln motif and display very low oxygen off rates. The roles of water and proximal strain are discussed.
血红蛋白和肌红蛋白中远端血红素口袋的结构在控制配体结合动力学方面可能发挥重要作用。占据远端口袋的残基的大小和极性可能会产生空间和介电效应。在脊椎动物系统中,远端口袋通常在E7位置含有一个“远端”组氨酸,在B10位置含有一个亮氨酸。有几种无脊椎动物的血红蛋白或肌红蛋白呈现出一种模式,其中E7和B10残基分别是谷氨酰胺和酪氨酸。这些蛋白质通常具有非常高的氧亲和力,这源于非常缓慢的配体解离速率。在本研究中,将两种这样的血红蛋白进行了比较,一种来自线虫猪蛔虫,另一种来自固定硫化物的蛤类栉孔扇贝,比较了它们的构象和功能特性。紫外共振拉曼光谱和可见共振拉曼光谱分别用于探测酪氨酸残基的配体依赖性氢键模式和近端血红素口袋相互作用。傅里叶变换红外吸收光谱通过与血红素结合的一氧化碳的伸缩频率来探测远端血红素口袋的介电特性。通过一氧化碳和氧气的双分子复合重结合来探测功能。研究结果揭示了两种非常不同的模式,表明了实现低氧解离速率的两种不同机制。在猪蛔虫血红蛋白中,一个包括E7谷氨酰胺、B10酪氨酸和与血红素结合的氧的氢键网络形成了一个紧密的氧笼。氧气的解离需要大幅度的构象波动,这既导致通过氢键稳定作用的丧失使氧气自发解离,也导致通过紧密远端笼子的短暂破坏和打开使配体逃逸的概率增加。在栉孔扇贝血红蛋白的情况下,没有证据表明存在紧密的笼子。相反,数据支持一种模型,即氢键网络更加脆弱,远端口袋的平衡状态比猪蛔虫的情况更加开放和容易接近。结果解释了为什么猪蛔虫血红蛋白具有已知的最高氧亲和力之一(P50约为10^(-3)托),而栉孔扇贝血红蛋白II的氧亲和力与肌红蛋白相当(P50 = 0.13托),尽管这两种血红蛋白都含有B10酪氨酸和E7谷氨酰胺基序,并且显示出非常低的氧解离速率。还讨论了水和近端应变的作用。