Department of Chemistry, University of Puerto Rico, Mayagüez Campus, P.O. Box 9019, Mayagüez 00681-9019, Puerto Rico.
Biochem Biophys Res Commun. 2012 Aug 10;424(4):771-6. doi: 10.1016/j.bbrc.2012.07.032. Epub 2012 Jul 15.
Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. (1)H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00ppm, GlnE7N(ε1)H/N(ε2)H at 10.66ppm/-3.27ppm, and PheE11 C(δ)H at 11.75ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen bonding network loop between the 6-propionate, the heme ligand and nearby amino acids, tailoring in this way the electron density in the heme-ligand moiety.
丙酸盐作为血红素活性中心的外围基团,被描述为能够调节血红素的反应性和配体选择。这些电子特性促使人们提出这样一个问题,即血红素配体部分中丙酸盐和远端氨基酸之间是否存在氢键网络是否可以调节生理相关事件,如配体结合和解离活性。在这里,我们使用来自 Lucina pectinata 的血红蛋白 I PheB10Tyr 突变体作为 TyrB10 和 GlnE7 血红素蛋白的模型,通过 NMR 光谱评估了这些网络的作用。(1)H-NMR 结果表明,rHbICN PheB10Tyr 衍生物中 TyrB10 OHη 的化学位移为 31.00ppm,GlnE7N(ε1)H/N(ε2)H 的化学位移为 10.66ppm/-3.27ppm,PheE11 C(δ)H 的化学位移为 11.75ppm,表明存在拥挤、塌陷和受限的远端口袋。强偶极子相互作用和 GlnE7/6-丙酸盐基团、GlnE7/TyrB10 和 TyrB10/CN 之间的残基交叉峰表明,GlnE7、TyrB10、6-丙酸盐基团和血红素配体之间的这种氢键网络环对血红素铁电子密度以及配体稳定化机制的调节有很大的贡献。因此,这里提出的网络环支持这样一个事实,即氢键的电子受吸性质受丙酸盐与附近电子环境的相互作用控制,有助于调节血红素电子密度状态。因此,我们假设在具有类似静电环境的血红素蛋白中,血红素-6-丙酸盐的灵活性促进了 6-丙酸盐、血红素配体和附近氨基酸之间的氢键网络环,从而调整血红素配体部分的电子密度。