Suppr超能文献

用一种新的时变自回归(TVAR)方法估计事件相关同步变化。

Estimation of event-related synchronization changes by a new TVAR method.

作者信息

Kaipio J P, Karjalainen P A

机构信息

Department of Applied Physics, University of Kuopio, Finland.

出版信息

IEEE Trans Biomed Eng. 1997 Aug;44(8):649-56. doi: 10.1109/10.605421.

Abstract

The modeling of nonstationary electroencephalogram (EEG) with time-varying autoregressive (TVAR) models is discussed. The classical least squares TVAR approach is modified so that prior assumptions about the signal can be taken into account in an optimal way. The method is then applied to the estimation of event-related synchronization changes in the EEG. The results show that the new approach enables effective estimation of the parameter evolution of the time-varying EEG with better time resolution compared to previous methods. The new method also allows single-trial analysis of the event-related synchronization.

摘要

讨论了使用时变自回归(TVAR)模型对非平稳脑电图(EEG)进行建模。对经典的最小二乘TVAR方法进行了修改,以便能够以最优方式考虑关于信号的先验假设。然后将该方法应用于脑电图中事件相关同步变化的估计。结果表明,与先前方法相比,新方法能够以更好的时间分辨率有效地估计时变脑电图的参数演变。新方法还允许对事件相关同步进行单次试验分析。

相似文献

7
The accuracy of localizing equivalent dipoles and the spatio-temporal correlations of background EEG.
IEEE Trans Biomed Eng. 1998 Sep;45(9):1114-21. doi: 10.1109/10.709555.
9
Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence.
Biol Cybern. 2003 Oct;89(4):303-12. doi: 10.1007/s00422-003-0394-x. Epub 2003 Oct 22.

引用本文的文献

1
Estimation of the dynamics of event-related desynchronisation changes in electroencephalograms.
Med Biol Eng Comput. 1999 May;37(3):309-15. doi: 10.1007/BF02513305.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验