Suppr超能文献

消除二硫键氧化还原酶DsbA活性位点螺旋附近的所有带电残基。静电相互作用对稳定性和氧化还原性质的影响。

Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.

作者信息

Jacobi A, Huber-Wunderlich M, Hennecke J, Glockshuber R

机构信息

Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, CH-8093 Zürich, Switzerland.

出版信息

J Biol Chem. 1997 Aug 29;272(35):21692-9. doi: 10.1074/jbc.272.35.21692.

Abstract

Disulfide oxidoreductases are structurally related proteins that share the thioredoxin fold and a catalytic disulfide bond that is located at the N terminus of an alpha-helix. The different redox potentials of these enzymes varying from -270 mV for thioredoxin to -125 mV for DsbA have been attributed to the lowered pKa values of their nucleophilic, active-site cysteines and the difference in thermodynamic stability between their oxidized and reduced forms (DeltaDeltaGox/red). The lowered pKa of the nucleophilic cysteine thiols was proposed to result from favorable interactions with the helix dipole and charged residues in their vicinity. In this study, we have eliminated all charged residues in the neighborhood of the active-site disulfide of DsbA from Escherichia coli to analyze their contribution to the physicochemical properties of the protein. We show that the conserved charge network among residues Glu24, Glu37, and Lys58 stabilizes the oxidized form of DsbA and thus does not cause the high redox potential of the enzyme. The pKa values of the nucleophilic cysteine (Cys30) and the redox potentials of the DsbA variants E24Q, E37Q, K58M, E24Q/K58M, E37Q/K58M, E24Q/E37Q, E24Q/E37Q/K58M, and E24Q/E37Q/E38Q/K58M are similar to those of DsbA wild type. The redox potentials of the variants neither correlate with the Cys30 pKa values nor with the DeltaDeltaGox/red values, demonstrating that the relationship between these parameters is far more complex than previously thought.

摘要

二硫键氧化还原酶是结构相关的蛋白质,它们具有硫氧还蛋白折叠结构和位于α-螺旋N端的催化二硫键。这些酶的氧化还原电位不同,从硫氧还蛋白的-270 mV到DsbA的-125 mV,这归因于其亲核活性位点半胱氨酸的pKa值降低以及其氧化态和还原态之间的热力学稳定性差异(ΔΔGox/red)。亲核半胱氨酸硫醇的pKa值降低被认为是由于与螺旋偶极以及其附近的带电荷残基的有利相互作用所致。在本研究中,我们消除了大肠杆菌DsbA活性位点二硫键附近的所有带电荷残基,以分析它们对该蛋白质物理化学性质的贡献。我们表明,Glu24、Glu37和Lys58残基之间保守的电荷网络稳定了DsbA的氧化形式,因此不会导致该酶的高氧化还原电位。DsbA变体E24Q、E37Q、K58M、E24Q/K58M、E37Q/K58M、E24Q/E37Q、E24Q/E37Q/K58M和E24Q/E37Q/E38Q/K58M的亲核半胱氨酸(Cys30)的pKa值和氧化还原电位与DsbA野生型相似。这些变体的氧化还原电位既不与Cys30的pKa值相关,也不与ΔΔGox/red值相关,这表明这些参数之间的关系比以前认为的要复杂得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验