Charbonnier J B, Belin P, Moutiez M, Stura E A, Quéméneur E
CEA, Département d'Ingénierie et d'Etudes des Protéines, Gif-sur-Yvette, France.
Protein Sci. 1999 Jan;8(1):96-105. doi: 10.1110/ps.8.1.96.
In addition to the Cys-Xaa-Xaa-Cys motif at position 30-33, DsbA, the essential catalyst for disulfide bond formation in the bacterial periplasm shares with other oxidoreductases of the thioredoxin family a cis-proline in proximity of the active site residues. In the variant DsbA(P151A), this residue has been changed to an alanine, an almost isosteric residue which is not disposed to adopt the cis conformation. The substitution strongly destabilized the structure of DsbA, as determined by the decrease in the free energy of folding. The pKa of the thiol of Cys30 was only marginally decreased. Although in vivo the variant appeared to be correctly oxidized, it exhibited an activity less than half that of the wild-type enzyme with respect to the folding of alkaline phosphatase, used as a reporter of the disulfide bond formation in the periplasm. DsbA(P151A) crystallized in a different crystal form from the wild-type protein, in space group P2(1) with six molecules in the asymmetric unit. Its X-ray structure was determined to 2.8 A resolution. The most significant conformational changes occurred at the active site. The loop 149-152 adopted a new backbone conformation with Ala151 in a trans conformation. This rearrangement resulted in the loss of van der Waals interactions between this loop and the disulfide bond. His32 from the Cys-Xaa-Xaa-Cys sequence presented in four out of six molecules in the asymmetric unit a gauche conformation not observed in the wild-type protein. The X-ray structure and folding studies on DsbA(P151A) were consistent with the cis-proline playing a major role in the stabilization of the protein. A role for the positioning of the substrate is discussed. These important properties for the enzyme function might explain the conservation of this residue in DsbA and related proteins possessing the thioredoxin fold.
除了位于30 - 33位的Cys-Xaa-Xaa-Cys基序外,细菌周质中二硫键形成的关键催化剂DsbA与硫氧还蛋白家族的其他氧化还原酶一样,在活性位点残基附近有一个顺式脯氨酸。在变体DsbA(P151A)中,这个残基已被替换为丙氨酸,丙氨酸是一种几乎等电子的残基,不易采用顺式构象。如通过折叠自由能的降低所确定的,该取代使DsbA的结构严重不稳定。Cys30巯基的pKa仅略有降低。尽管在体内该变体似乎被正确氧化,但就周质中二硫键形成的报告分子碱性磷酸酶的折叠而言,其活性不到野生型酶的一半。DsbA(P151A)以与野生型蛋白不同的晶体形式结晶,空间群为P2(1),不对称单元中有六个分子。其X射线结构的分辨率为2.8 Å。最显著的构象变化发生在活性位点。环149 - 152采用了新的主链构象,Ala151处于反式构象。这种重排导致该环与二硫键之间的范德华相互作用丧失。在不对称单元中六个分子中的四个分子中,来自Cys-Xaa-Xaa-Cys序列的His32呈现出野生型蛋白中未观察到的gauche构象。对DsbA(P151A)的X射线结构和折叠研究与顺式脯氨酸在蛋白质稳定中起主要作用一致。讨论了底物定位的作用。酶功能的这些重要特性可能解释了DsbA和具有硫氧还蛋白折叠的相关蛋白中该残基的保守性。