Tittor J, Haupts U, Haupts C, Oesterhelt D, Becker A, Bamberg E
Max-Planck-Institut für Biochemie, Martinsried, D82152, Germany.
J Mol Biol. 1997 Aug 22;271(3):405-16. doi: 10.1006/jmbi.1997.1204.
Replacement of aspartate 85 (D85) in bacteriorhodopsin (BR) by threonine but not be asparagine creates at pH<7 an anion-binding site in the molecular similar to that in chloride pump halorhodopsin. Binding of various anions to BR-D85T causes a blue shift of the absorption maximum by maximally 57 nm. Connected to this color change is a change in the absorption difference spectrum of the initial state and the longest living photo intermediate from a positive difference maximum at 460 nm in the absence of transported anions to one at 630 nm in their presence. Increasing anion concentration cause decreasing decay times of this intermediate. At physiological pH, BR-D85T but not BR-D85N transports chloride ions inward in green light, protons outward in blue or green light and protons inward in white light (directions refer to the intact cell). The proton movements are observable also in BR-D85N. Thus, creation of an anion-binding site in BR is responsible for chloride transport and introduction of anion-dependent spectroscopic properties at physiological pH. The different transport modes are explained with the help of the recently proposed IST model, which states that after light-induced isomerization of the retinal an ion transfer step and an accessibility change of the active site follow. The latter two steps occur independently. In order to complete the cyclic event, the accessibility change, ion transfer and isomerization state have to be reversed. The relative rates of accessibility changes and ion transfer steps define ultimately the vectoriality of ion transfers. All transport modes described here for the same molecule can satisfactorily be described in the framework of this general concept.
在细菌视紫红质(BR)中,将天冬氨酸85(D85)替换为苏氨酸而非天冬酰胺,会在pH<7时在分子中产生一个类似于氯离子泵视紫质中阴离子结合位点。各种阴离子与BR-D85T的结合会使吸收最大值发生最大57nm的蓝移。与此颜色变化相关的是,初始状态和寿命最长的光中间体的吸收差光谱发生变化,从在没有转运阴离子时460nm处的正差异最大值变为存在阴离子时630nm处的正差异最大值。阴离子浓度增加会导致该中间体的衰减时间缩短。在生理pH下,BR-D85T而非BR-D85N在绿光下向内转运氯离子,在蓝光或绿光下向外转运质子,在白光下向内转运质子(方向指完整细胞)。在BR-D85N中也可观察到质子移动。因此,在BR中创建阴离子结合位点负责氯离子转运,并在生理pH下引入依赖阴离子的光谱特性。借助最近提出的IST模型解释了不同的转运模式,该模型指出,在视网膜光诱导异构化后,接着是离子转移步骤和活性位点的可及性变化。后两个步骤独立发生。为了完成循环事件,可及性变化、离子转移和异构化状态必须反转。可及性变化和离子转移步骤的相对速率最终决定了离子转移的方向性。在此针对同一分子描述的所有转运模式都可以在这个一般概念的框架内得到令人满意的描述。