Denny E, Schroter R C
Centre for Biological and Medical Systems, Imperial College of Science, Technology, and Medicine, London, United Kingdom.
J Biomech Eng. 1997 Aug;119(3):289-97. doi: 10.1115/1.2796093.
A finite element model, comprising an assemblage of tetrakaidecahedra or truncated octahedra, is used to represent an alveolar duct unit. The dimensions of the elastin and collagen fibre bundles, and the surface tension properties of the air-liquid interfaces, are based on available published data. Changes to the computed static pressure-volume behavior with variation in alveolar dimensions and fibre volume densities are characterized using distensibility indices (K). The air-filled lung distensibility (Ka) decreased with a reduction in the alveolar airspace length dimensions and increased with a reduction of total fibre volume density. The saline-filled lung distensibility (Ks) remained constant with alveolar dimensions and increased with decreasing total fibre volume density. The degree of geometric anisotropy between the duct lumen and alveoli was computed over pressure-volume cycles. To preserve broadly isotropic behavior, parenchyma with smaller alveolar airspace length dimensions required higher concentrations of fibres located in the duct and less in the septa in comparison with parenchyma of larger airspace dimensions.
一个由十四面体或截顶八面体组合而成的有限元模型,被用于表示肺泡管单元。弹性蛋白和胶原纤维束的尺寸,以及气液界面的表面张力特性,均基于已发表的可用数据。通过扩张性指数(K)来表征随着肺泡尺寸和纤维体积密度变化而计算出的静态压力-容积行为的变化。充气肺的扩张性(Ka)随着肺泡气腔长度尺寸的减小而降低,随着总纤维体积密度的降低而增加。充生理盐水肺的扩张性(Ks)在肺泡尺寸变化时保持恒定,并随着总纤维体积密度的降低而增加。在压力-容积循环中计算导管腔和肺泡之间的几何各向异性程度。为了保持大致各向同性的行为,与具有较大气腔尺寸的实质相比,具有较小肺泡气腔长度尺寸的实质需要更高浓度的纤维位于导管中,而位于间隔中的纤维较少。