Laible P D, Greenfield S R, Wasielewski M R, Hansen D K, Pearlstein R M
Center for Mechanistic Biology, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Biochemistry. 1997 Jul 22;36(29):8677-85. doi: 10.1021/bi970672a.
The decay of the excited primary electron donor P* in bacterial photosynthetic reaction centers (both membrane-bound and detergent-isolated) has been observed to be nonexponential on a time scale of some tens of picoseconds. Although the multipicosecond nonexponentiality of P* has been ascribed to heterogeneity in teh rate of primary electron transfer (PET), the decay kinetics can be interpreted equally well using homogeneous models. To address this ambiguity, we studied the decay of excited bacteriochlorophyll (Bchl) in the membrane-bound core antenna/reaction center complexes of wild-type and mutant reaction center strains of Rhodobacter capsulatus. Reaction centers isolated from these same strains display a range of multiexponentiality in primary charge separation. The mutant strains carry substitutions of amino acids residing near the monomeric Bchl on the active and/or inactive sides of the reaction center. Transient absorption measurements monitoring the Qy bleach of antenna Bchls require at least two exponential components to fit all decays. The wild type was fitted with equal-amplitude components whose lifetimes are 24 and 65 ps. The shortest-lived component is relatively insensitive to mutation, in contrast to the longer-lived component(s) whose amplitude and magnitude were dramatically perturbed by amino acid substitutions. Unlike the situation with isolated reaction centers, here the only kinetic models consistent with the data are those in which the primary electron-transfer rate constant is heterogeneous, suggesting at least two structural populations of RCs. PET in the population with the shortest-lived antenna decay causes the kinetics to be transfer-to-trap-limited, whereas the kinetics in the other population(s)--having longer-lived antenna decays--are limited by the rate of PET. Observation of both types of kinetic limitation within a single light-harvesting system is unexpected and complicates any discussion of the rate-limiting step of light energy utilization in photosynthesis.
在细菌光合反应中心(包括膜结合型和去污剂分离型)中,已观察到激发态初级电子供体P在几十皮秒的时间尺度上呈非指数衰减。尽管P的多皮秒非指数特性归因于初级电子转移(PET)速率的异质性,但使用均相模型也能同样很好地解释衰减动力学。为了解决这种模糊性,我们研究了红假单胞菌野生型和突变型反应中心菌株的膜结合核心天线/反应中心复合物中激发态细菌叶绿素(Bchl)的衰减。从这些相同菌株分离出的反应中心在初级电荷分离方面表现出一系列多指数特性。突变菌株携带反应中心活性和/或非活性侧靠近单体Bchl的氨基酸替代。监测天线Bchls的Qy漂白的瞬态吸收测量需要至少两个指数成分来拟合所有衰减。野生型用寿命分别为24皮秒和65皮秒的等幅成分拟合。与寿命较长的成分相比,寿命最短的成分对突变相对不敏感,寿命较长的成分的幅度和大小因氨基酸替代而受到显著扰动。与分离的反应中心情况不同,这里与数据一致的唯一动力学模型是初级电子转移速率常数为异质的模型,这表明至少存在两种结构类型的反应中心。天线衰减寿命最短的群体中的PET导致动力学受转移到陷阱限制,而其他群体(天线衰减寿命较长)中的动力学受PET速率限制。在单个光捕获系统中观察到这两种类型的动力学限制是出乎意料的,并且使关于光合作用中光能利用限速步骤的任何讨论变得复杂。