Lange C S, Mayer P J, Reddy N M
Department of Radiation Oncology, SUNY Health Science Center at Brooklyn, New York 11203, USA.
Radiat Res. 1997 Sep;148(3):285-92.
Our data (Reddy et al., Radiat. Res. 141, 252-258, 1995) on the kinetics of the repair of potentially lethal damage in log-phase Chinese hamster V79 cells are used to test some predictions which arise from the different assumptions of the repair-misrepair (RMR) (C. A. Tobias, Radiat. Res. 104, S77-S95, 1985), lethal-potentially lethal (LPL) (S. B. Curtis, Radiat. Res. 106, 252-270, 1986) and double-strand break (DSB) (J. Y. Ostashevsky, Radiat. Res. 118, 437-466, 1989) models. The LPL model defines the time available for repair of PLD (t(rep)) as the time taken to reach maximal survival in a delayed-plating recovery experiment. Those data show that after this time has elapsed, contrary to the expectation of the LPL model, survival can be increased by changing the medium used for delayed plating from fresh growth medium to conditioned medium. According to the RMR model, all potentially lethal lesions should also be committed by that time and be unavailable for repair in the new medium. Only the DSB model correctly predicted that PLD (= DSBs) would still be available for repair after that time. Second, data for split-dose recovery are used to predict the first-order kinetics time constant for DSB repair (tau(DSBR)) using the DSB model (24 +/- 1.5 min). This value is nearly identical to the value of 27 +/- 1 min determined from the data obtained by Cheong et al. using pulsed-field gel electrophoresis (PFGE) (Mutat. Res. 274, 111-122, 1992). The value based on PFGE is used to calculate the value of t(rep) predicted by the DSB model (2.6 +/- 0.1 h), which agrees with the value determined experimentally as the time when changing the delayed-plating medium from growth medium to conditioned medium no longer gives the full recovery seen with delayed plating in conditioned medium (2.5 h). However, some recovery was seen for a change in the medium (growth medium to conditioned medium) up to 5-6 h postirradiation. Reanalysis of the original data on DSB repair shows that they are consistent with two first-order repair rates (18 +/- 7 min and about 52 min). These results are consistent with two pools of DSBs (or cells), each with their own t(rep). The early t(rep), associated with tau(fast), is predicted to be 1.7 +/- 0.7 h, and the late t(rep), associated with tau(slow), is predicted to be about 5 h. Both values are in excellent agreement with the times at which changing from growth medium to conditioned medium no longer gives the full recovery seen in conditioned medium only (the early t(rep)), and the time when changing from growth medium to conditioned medium produces no further increase in survival (the late t(rep)), respectively. It is noted that attempts to correlate radiosensitivity with the rates of DSB repair, rather than using an explicit model such as the DSB model, are unlikely to be productive since survival depends on both tau(DSBR) and t(rep) (as defined in the DSB model) and the latter may be the more important determinant of radiosensitivity (as it appears to be for ataxia telangiectasia cells compared to normal fibroblasts and for irs compared to V79 cells).
我们(雷迪等人,《辐射研究》141卷,252 - 258页,1995年)关于对数期中国仓鼠V79细胞中潜在致死性损伤修复动力学的数据,被用于检验从修复 - 错配(RMR)(C. A. 托拜厄斯,《辐射研究》104卷,S77 - S95页,1985年)、致死 - 潜在致死(LPL)(S. B. 柯蒂斯,《辐射研究》106卷,252 - 270页,1986年)和双链断裂(DSB)(J. Y. 奥塔舍夫斯基,《辐射研究》118卷,437 - 466页,1989年)模型的不同假设得出的一些预测。LPL模型将PLD修复可用时间(t(rep))定义为延迟接种恢复实验中达到最大存活率所需的时间。那些数据表明,在这段时间过去后,与LPL模型的预期相反,通过将延迟接种所用的培养基从新鲜生长培养基换成条件培养基,存活率可以提高。根据RMR模型,到那时所有潜在致死性损伤也应该已经确定,并且在新培养基中无法修复。只有DSB模型正确预测了在那段时间之后PLD(= DSBs)仍然可以修复。其次,利用DSB模型,将分次剂量恢复的数据用于预测DSB修复的一级动力学时间常数(tau(DSBR))(24 ± 1.5分钟)。这个值与张等人使用脉冲场凝胶电泳(PFGE)(《突变研究》274卷,111 - 122页,1992年)获得的数据所确定的27 ± 1分钟的值几乎相同。基于PFGE的值用于计算DSB模型预测的t(rep)值(2.6 ± 0.1小时),这与实验确定的值一致,即当将延迟接种培养基从生长培养基换成条件培养基不再能像在条件培养基中延迟接种那样实现完全恢复时的时间(2.5小时)。然而,在照射后长达5 - 6小时内,观察到培养基从生长培养基换成条件培养基时仍有一些恢复。对原始DSB修复数据的重新分析表明,它们与两个一级修复速率(18 ± 7分钟和约52分钟)一致。这些结果与两个DSB池(或细胞池)一致,每个池都有自己的t(rep)。与tau(快速)相关的早期t(rep)预计为1.7 ± 0.7小时,与tau(缓慢)相关的晚期t(rep)预计约为5小时。这两个值分别与从生长培养基换成条件培养基不再能像仅在条件培养基中那样实现完全恢复时的时间(早期t(rep)),以及从生长培养基换成条件培养基不再能使存活率进一步提高时的时间(晚期t(rep))非常吻合。需要注意的是,试图将放射敏感性与DSB修复速率相关联,而不是使用像DSB模型这样的明确模型,不太可能有成效,因为存活率取决于tau(DSBR)和t(rep)(如DSB模型中所定义),并且后者可能是放射敏感性更重要的决定因素(就共济失调毛细血管扩张症细胞与正常成纤维细胞相比以及irs细胞与V79细胞相比而言似乎是这样)。