Walker J, Barrett J
Department of Veterinary Parasitology, University of Glasgow, U.K.
Int J Parasitol. 1997 Aug;27(8):883-97. doi: 10.1016/s0020-7519(97)00039-8.
This paper reviews current knowledge regarding the metabolism of the sulphur-containing amino acids methionine and cysteine in parasitic protozoa and helminths. Particular emphasis is placed on the unusual aspects of parasite biochemistry which may present targets for rational design of antiparasite drugs. In general, the basic pathways of sulphur amino acid metabolism in most parasites resemble those of their mammalian hosts, since the enzymes involved in (a) the methionine cycle and S-adenosylmethionine metabolism, (b) the trans-sulphuration sequence, (c) the transminative catabolism of methionine, (d) the oxidative catabolism of cysteine and (e) glutathione synthesis have been demonstrated variously in several helminth and protozoan species. Despite these common pathways, there also exist numerous differences between parasite and mammalian metabolism. Some of these differences are relatively subtle. For example, the biochemical properties (and primary amino acid structures) of certain parasite methionine cycle enzymes and S-adenosylmethionine decarboxylases differ from those of the corresponding mammalian enzymes, and nematodes and trichomonads possess a novel, non-mammalian form of the trans-sulphuration enzyme cystathionine beta-synthase. The most profound differences between parasite and mammalian biochemistry relate to a number of unusual enzymes and thiol metabolites found in parasitic protozoa. In certain protozoa the pathway for methionine recycling from 5'-methylthioadenosine differs markedly from the mammalian route, and involves 2 exclusively microbial enzymes. Trypanosomatid protozoa contain the non-mammalian antioxidant thiol compounds ovothiol A and trypanothione, together with unique trypanothione-linked enzymes. Specific anaerobic protozoa possess another exclusively microbial enzyme, methionine gamma-lyase, which catabolises methionine (and homocysteine); the physiological significance of these non-mammalian activities is not fully understood. These unusual features offer opportunities for chemotherapeutic exploitation, and in some cases represent metabolic similarities with bacteria. Additionally, some anaerobic protozoa contain unidentified thiols and this implies the presence of further unusual enzymes/pathways in these organisms. So far, no truly unique targets for chemotherapy have been found in helminth sulphur amino acid metabolism, and to some degree this reflects the relative lack of detailed study in the area.
本文综述了目前关于寄生原生动物和蠕虫中含硫氨基酸甲硫氨酸和半胱氨酸代谢的知识。特别强调了寄生虫生物化学的异常方面,这些方面可能为抗寄生虫药物的合理设计提供靶点。一般来说,大多数寄生虫中硫氨基酸代谢的基本途径与其哺乳动物宿主相似,因为参与(a)甲硫氨酸循环和S-腺苷甲硫氨酸代谢、(b)转硫途径、(c)甲硫氨酸的转氨基分解代谢、(d)半胱氨酸的氧化分解代谢以及(e)谷胱甘肽合成的酶已在几种蠕虫和原生动物物种中得到不同程度的证实。尽管存在这些共同途径,但寄生虫和哺乳动物的代谢之间也存在许多差异。其中一些差异相对细微。例如,某些寄生虫甲硫氨酸循环酶和S-腺苷甲硫氨酸脱羧酶的生化特性(以及一级氨基酸结构)与相应的哺乳动物酶不同,线虫和滴虫具有一种新型的、非哺乳动物形式的转硫酶胱硫醚β-合酶。寄生虫和哺乳动物生物化学之间最显著的差异与寄生原生动物中发现的一些异常酶和硫醇代谢物有关。在某些原生动物中,从5'-甲基硫代腺苷回收甲硫氨酸的途径与哺乳动物途径明显不同,并且涉及两种专门的微生物酶。锥虫原生动物含有非哺乳动物抗氧化硫醇化合物卵硫醇A和锥虫硫醇,以及独特的锥虫硫醇连接酶。特定的厌氧原生动物拥有另一种专门的微生物酶,甲硫氨酸γ-裂解酶,它分解代谢甲硫氨酸(和同型半胱氨酸);这些非哺乳动物活性的生理意义尚未完全了解。这些异常特征为化疗开发提供了机会,在某些情况下代表了与细菌的代谢相似性。此外,一些厌氧原生动物含有未鉴定的硫醇,这意味着这些生物体中存在进一步的异常酶/途径。到目前为止,在蠕虫硫氨基酸代谢中尚未发现真正独特的化疗靶点,在某种程度上这反映了该领域相对缺乏详细研究。