Suppr超能文献

Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts.

作者信息

Matzno S, Yamauchi T, Gohda M, Ishida N, Katsuura K, Hanasaki Y, Tokunaga T, Itoh H, Nakamura N

机构信息

Research Division, The Green Cross Corporation, Hirakata, Osaka, Japan.

出版信息

J Lipid Res. 1997 Aug;38(8):1639-48.

PMID:9300786
Abstract

The relationship between the inhibition of cholesterol biosynthesis and occurrence of myopathy was studied in L6 myoblasts using two lines of cholesterol biosynthesis inhibitors, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor (simvastatin) and squalene epoxidase inhibitors (TU-2078 and NB-598). All inhibitors completely inhibited the cholesterol synthesis in L6 myoblasts at doses of 1 and 3 microM. Simvastatin (3 microM) inhibited the fusion reaction of L6 myoblasts followed by the severe cellular damage. The myoblasts also had failed actin fiber formation and creatinine phosphokinase (CPK) production. Additionally, this agent also caused apoptotic cell death in differentiated L6 muscle fiber, indicating that skeletal myopathy by HMG-CoA reductase inhibitors seems to occur not only in differentiating immature myoblasts but also in matured skeletal myotubes. In contrast, TU-2078 and NB-598 had no effect on the fusion reaction of differentiating myoblasts or on the cellular viability of muscle fiber at 3 microM, enough to completely inhibit cholesterol biosynthesis. It is conceivable that the mevalonate depletion and subsequent failure of ras farnesylation induced by simvastatin might cause the defects in differentiation and maintenance of the muscle fiber. Squalene epoxidase inhibitors did not show this adverse effect presumably because of the enzyme inhibition downstream of farnesyl synthesis. The present findings suggest the safe use of squalene epoxidase inhibitors in lipid-lowering therapy.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验