Suppr超能文献

Coarse-grain parallel computing for very large scale neural simulations in the NEXUS simulation environment.

作者信息

Sakai K, Sajda P, Yen S C, Finkel L H

机构信息

University of Pennsylvania, Department of Bioengineering, Philadelphia 19104-6392, USA.

出版信息

Comput Biol Med. 1997 Jul;27(4):257-66. doi: 10.1016/s0010-4825(96)00029-7.

Abstract

We describe a neural simulator designed for simulating very large scale models of cortical architectures. This simulator, NEXUS, uses coarse-grain parallel computing by distributing computation and data onto multiple conventional workstations connected via a local area network. Coarse-grain parallel computing offers natural advantages in simulating functionally segregated neural processes. We partition a complete model into modules with locally dense connections--a module may represent a cortical area, column, layer, or functional entity. Asynchronous data communications among workstations are established through the Network File System, which, together with the implicit modularity, decreases communications overhead, and increases overall performance. Coarse-grain parallelism also benefits from the standardization of conventional workstations and LAN, including portability between generations and vendors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验