Suppr超能文献

使用通用图形处理单元进行基于尖峰神经网络模型的基底神经节电路的实时仿真。

Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

机构信息

Computational Science Research Program, RIKEN, Japan.

出版信息

Neural Netw. 2011 Nov;24(9):950-60. doi: 10.1016/j.neunet.2011.06.008. Epub 2011 Jun 30.

Abstract

Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks.

摘要

实时模拟具有生物真实性的尖峰神经网络对于评估其与真实环境交互的能力是必要的。然而,由于两个因素,这种神经网络的实时模拟是困难的:(1)巨大的网络规模和(2)生物真实性神经元的复杂动力学。为了解决这些问题,主要是后者,我们选择使用图形处理单元(GPU)上的通用计算来模拟这样的神经网络,利用图形处理单元(GPU)的强大计算能力。作为实时模拟的目标,我们使用了根据电生理和解剖学知识开发的基底神经节模型。该模型由 370 个尖峰模型神经元的异质群体组成,包括计算量大的基于电导率的模型,通过 11002 个突触连接。该模型的模拟尚未在通用计算服务器上实时进行。通过在 NVIDIA Geforce GTX 280 GPU 上以数据并行和任务并行的方式对模型进行并行化,仅使用 GPU 总计算资源的三分之一即可稳健地实现快于实时的模拟。此外,我们使用 GPU 的全部计算资源来执行三个基底神经节模型实例的快于实时的模拟;这些实例包含 1100 个神经元和 33006 个突触,并且在每个计算步骤中都进行了同步。最后,我们开发了用于同时可视化快于实时模拟输出的软件。这些结果表明了 GPGPU 技术在实时模拟真实神经网络中的潜在威力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验