Suppr超能文献

鸟类飞行过程中耗氧量的生理建模。

Physiological modelling of oxygen consumption in birds during flight.

作者信息

Bishop C, Butler P

出版信息

J Exp Biol. 1995;198(Pt 10):2153-63. doi: 10.1242/jeb.198.10.2153.

Abstract

This study combines data on changes in cardiovascular variables with body mass (Mb) and with exercise intensity to model the oxygen supply available to birds during flight. Its main purpose is to provide a framework for identifying the factors involved in limiting aerobic power input to birds during flight and to suggest which cardiovascular variables are the most likely to have been influenced by natural selection when considering both allometric and adaptive variation. It is argued that natural selection has acted on heart rate (fh) and cardiac stroke volume (Vs), so that the difference in the arteriovenous oxygen content (CaO2-Cv¯O2) in birds, both at rest and during flight, is independent of Mb. Therefore, the Mb exponent for oxygen consumption (V(dot)O2) during flight can be estimated from measurements of heart rate and stroke volume. Stroke volume is likely to be directly proportional to heart mass (Mh) and, using empirical data, values for the Mb coefficients and exponents of various cardiovascular variables are estimated. It is concluded that, as found for mammals, fh is the main adaptive variable when considering allometric variation, although Mh also shows a slight scaling effect. Relative Mh is likely to be the most important when considering adaptive specialisations. The Fick equation may be represented as: (V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby , where w, x, y, z are the body mass exponents for each variable and the terms in parentheses represent the Mb coefficients. Utilising this formula and data from the literature, the scaling of minimum V(dot)O2 during flight for bird species with a 'high aerobic capacity' (excluding hummingbirds) is calculated to be: 166Mb0.77±0.09 = 574Mb-0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 , and for hummingbirds (considered separately owing to their unique wing kinematics) it is: 314Mb0.90±0.22 = 617Mb-0.10±0.06 x 6.13Mb1.00±0.11 x 0.083Mb0.00±0.05 . These results are largely dependent on the cardiovascular values obtained from pigeons flying near to the minimum power speed of 10 m s-1, but would appear to provide realistic values. Both the measured and the estimated V(dot)O2 for hummingbirds appear to scale with a larger Mb exponent than that for all other birds, and it is suggested that this is as a result of the larger Mb exponent for flight muscle mass as the larger species of hummingbirds try to maintain hovering performance. It is proposed that estimated V(dot)O2 for birds during flight, which is based on Mh in combination with estimates of fh and CaO2-Cv¯O2, gives an indirect measure of relative aerobic power input and, when corrected for the estimated scaling influences of the mechano-chemical conversion efficiency and lift generation with respect to Mb, may be a useful indicator of the relative capacity of the muscle to sustain power output and lift production during flight.

摘要

本研究将心血管变量的变化数据与体重(Mb)以及运动强度相结合,以模拟鸟类飞行过程中可利用的氧气供应。其主要目的是提供一个框架,用于识别限制鸟类飞行过程中有氧功率输入的相关因素,并指出在考虑异速生长和适应性变化时,哪些心血管变量最有可能受到自然选择的影响。有人认为,自然选择作用于心率(fh)和心搏量(Vs),使得鸟类在休息和飞行时动静脉氧含量差(CaO2 - Cv¯O2)与体重无关。因此,飞行过程中耗氧量(V(dot)O2)的体重指数可通过心率和心搏量的测量值来估算。心搏量可能与心脏质量(Mh)成正比,并利用经验数据估算了各种心血管变量的体重系数和指数。得出的结论是,与哺乳动物的情况一样,在考虑异速生长变化时,fh是主要的适应性变量,尽管Mh也显示出轻微的缩放效应。在考虑适应性特化时,相对Mh可能是最重要的。菲克方程可表示为:(V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby ,其中w、x、y、z是每个变量的体重指数,括号中的项表示体重系数。利用该公式和文献数据,计算出“高有氧能力”鸟类(不包括蜂鸟)飞行过程中最小V(dot)O2的缩放比例为:166Mb0.77±0.09 = 574Mb - 0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 ,对于蜂鸟(由于其独特的翅膀运动学单独考虑)为:314Mb0.90±0.22 = 617Mb - 0.10±0.06 x 6. (V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby ,其中w、x、y、z是每个变量的体重指数,括号中的项表示体重系数。利用该公式和文献数据,计算出“高有氧能力”鸟类(不包括蜂鸟)飞行过程中最小V(dot)O2的缩放比例为:166Mb0.77±0.09 = 574Mb - 0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 ,对于蜂鸟(由于其独特的翅膀运动学单独考虑)为:314Mb0.90±0.22 = 617Mb - 0.. 这些结果在很大程度上取决于从以接近10米/秒的最小功率速度飞行的鸽子获得的心血管值,但似乎能提供现实的值。蜂鸟的测量和估计V(dot)O2似乎比所有其他鸟类的体重指数缩放比例更大,有人认为这是由于较大的蜂鸟物种试图维持悬停性能时飞行肌肉质量的体重指数更大。有人提出,基于Mh以及fh和CaO2 - Cv¯O2的估计值来估计鸟类飞行过程中的V(dot)O2,可间接测量相对有氧功率输入,并且在针对机械化学转换效率和升力产生相对于体重的估计缩放影响进行校正后,可能是肌肉在飞行过程中维持功率输出和升力产生相对能力的有用指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验