Suppr超能文献

蜂鸟在低密度和低氧混合气体中悬停时飞行能量学的限制

Limits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures.

作者信息

Chai P, Dudley R

机构信息

Department of zoology, University of Texas, Austin 78712, USA.

出版信息

J Exp Biol. 1996 Oct;199(Pt 10):2285-95. doi: 10.1242/jeb.199.10.2285.

Abstract

Hovering hummingbirds offer a model locomotor system for which analyses of both metabolism and flight mechanics are experimentally tractable. Because hummingbirds exhibit the highest mass-specific metabolic rates among vertebrates, maximum performance of hovering flight represents the upper limit of aerobic locomotion in vertebrates. This study evaluates the potential constraints of flight mechanics and oxygen availability on maximum flight performance. Hummingbird flight performance was manipulated non-invasively using air and gas mixtures which influenced metabolism via variable oxygen partial pressure and/or altered flight mechanics via variable air densities. Limits to the locomotor capacity of hovering ruby-throated hummingbirds (Archilochus colubris) were unequivocally indicated by aerodynamic failure in either air/helium or air/heliox mixtures. Air/helium mixtures are hypodense and hypoxic; failure to sustain hovering flight occurred at 63% of the density of sea-level air and at an oxygen concentration of 12%. Air/heliox mixtures are hypodense but normoxic; failure in hovering occurred at 47% of sea-level air density. Thus, hummingbirds demonstrated considerable power reserves in hovering flight as well as hypoxic tolerance. In air/helium mixtures, hovering was limited by oxygen supply and not by flight mechanics. Birds hovering in air/helium mixtures increased their mechanical power output but not their rate of oxygen consumption. By contrast, birds hovering in air/heliox mixtures increased both mechanical performance and metabolic expenditure. Under hypoxia, hovering hummingbirds demonstrated non-negligible, but still limited, capacities for anaerobic metabolism and/or oxygen storage. Depending on the physical context, hummingbird flight performance can therefore be limited by oxygen availability or by flight aerodynamics.

摘要

悬停的蜂鸟提供了一个便于进行新陈代谢和飞行力学分析的运动系统模型。由于蜂鸟在脊椎动物中具有最高的质量比代谢率,悬停飞行的最大性能代表了脊椎动物有氧运动的上限。本研究评估了飞行力学和氧气供应对最大飞行性能的潜在限制。通过使用空气和气体混合物对蜂鸟的飞行性能进行非侵入性操控,这些混合物通过可变的氧分压影响新陈代谢和/或通过可变的空气密度改变飞行力学。在空气/氦气或空气/氦氧混合气中出现的空气动力学故障明确表明了红宝石喉蜂鸟(Archilochus colubris)悬停运动能力的极限。空气/氦气混合物密度低且缺氧;在海平面空气密度的63%和氧气浓度为12%时,无法维持悬停飞行。空气/氦氧混合气密度低但氧含量正常;在海平面空气密度的47%时出现悬停故障。因此,蜂鸟在悬停飞行中表现出相当大的功率储备以及对缺氧的耐受性。在空气/氦气混合物中,悬停受氧气供应限制而非飞行力学限制。在空气/氦气混合物中悬停的鸟类增加了它们的机械功率输出,但没有增加氧气消耗率。相比之下,在空气/氦氧混合气中悬停的鸟类既提高了机械性能又增加了代谢消耗。在缺氧情况下,悬停的蜂鸟表现出不可忽视但仍然有限的无氧代谢和/或氧气储存能力。因此,根据具体的物理环境,蜂鸟的飞行性能可能受氧气供应或飞行空气动力学的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验