Suppr超能文献

异常强效的微管抑制剂隐藻素1的作用机制

Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1.

作者信息

Panda D, Himes R H, Moore R E, Wilson L, Jordan M A

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA.

出版信息

Biochemistry. 1997 Oct 21;36(42):12948-53. doi: 10.1021/bi971302p.

Abstract

Cryptophycin 1 is a remarkably potent antiproliferative compound that shows excellent antitumor activity against mammary, colon, and pancreatic adenocarcinomas in mouse xenographs. At picomolar concentrations, cryptophycin 1 blocks cells in the G2/M phase of the cell cycle by an apparent action on microtubules. The compound binds to tubulin, inhibits microtubule polymerization, and depolymerizes preformed microtubules in vitro. Its exceptionally powerful antitumor activity (many-fold greater than paclitaxel or the vinca alkaloids) raises important questions about its mechanism of action. By quantitative video microscopy, we examined the effects of cryptophycin 1 on the dynamics of individual microtubules assembled to steady state from bovine brain tubulin. At low nanomolar concentrations, in the absence of net microtubule depolymerization, cryptophycin 1 potently stabilized microtubule dynamics. It reduced the rate and extent of microtubule shortening and growing and increased the frequency of rescue. The results suggest that cryptophycin 1 exerts its antiproliferative and antimitotic activity by binding reversibly and with high affinity to the ends of microtubules, perhaps in the form of a tubulin-cryptophycin 1 complex, resulting in the most potent suppression of microtubule dynamics yet described.

摘要

隐藻素1是一种极具效力的抗增殖化合物,在小鼠异种移植模型中对乳腺、结肠和胰腺腺癌显示出优异的抗肿瘤活性。在皮摩尔浓度下,隐藻素1通过对微管的明显作用,将细胞阻滞在细胞周期的G2/M期。该化合物与微管蛋白结合,抑制微管聚合,并在体外使预先形成的微管解聚。其异常强大的抗肿瘤活性(比紫杉醇或长春花生物碱强许多倍)引发了关于其作用机制的重要问题。通过定量视频显微镜,我们研究了隐藻素1对从牛脑微管蛋白组装到稳态的单个微管动力学的影响。在低纳摩尔浓度下,在没有净微管解聚的情况下,隐藻素1有力地稳定了微管动力学。它降低了微管缩短和生长的速率和程度,并增加了挽救频率。结果表明,隐藻素1通过以高亲和力可逆地结合到微管末端,可能以微管蛋白 - 隐藻素1复合物的形式,发挥其抗增殖和抗有丝分裂活性,从而导致对微管动力学的最有效抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验