Suppr超能文献

在较大pH范围内的低离子强度下,未观察到氯化溶菌酶的盐溶现象。

No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH.

作者信息

Retailleau P, Riès-Kautt M, Ducruix A

机构信息

Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, Gif sur Yvette, France.

出版信息

Biophys J. 1997 Oct;73(4):2156-63. doi: 10.1016/S0006-3495(97)78246-8.

Abstract

Solubility of lysozyme chloride was determined in the absence of added salt and in the presence of 0.05-1.2 M NaCl, starting from isoionic lysozyme, which was then brought to pH values from 9 to 3 by addition of HCl. The main observation is the absence of a salting-in region whatever the pH studied. This is explained by a predominant electrostatic screening of the positively charged protein and/or by adsorption of chloride ions by the protein. The solubility increases with the protein net charge at low ionic strength, but the reverse is observed at high ionic strength. The solubility of lysozyme chloride seems to become independent of ionic strength at pH approximately 9.5, which is interpreted as a shift of the isoionic pH (10.8) to an isoelectric pH due to chloride binding. The crystallization at very low ionic strength, where lysozyme crystallizes at supersaturation values as low as 1.1, amplifies the effect of pH on protein solubility. Understanding the effect of the net charge and of ionic strength on protein-protein interactions is valuable not only for protein crystal growth but more generally also for the formation of protein-protein or protein-ligand complexes.

摘要

从等离子溶菌酶开始,在不添加盐以及存在0.05 - 1.2 M氯化钠的情况下,测定了氯化溶菌酶的溶解度,随后通过添加盐酸将其pH值调至9到3。主要观察结果是,无论研究的pH值如何,均不存在盐溶区域。这可以通过对带正电蛋白质的主要静电屏蔽作用和/或蛋白质对氯离子的吸附作用来解释。在低离子强度下,溶解度随蛋白质净电荷增加而升高,但在高离子强度下则观察到相反的情况。在pH约为9.5时,氯化溶菌酶的溶解度似乎变得与离子强度无关,这被解释为由于氯离子结合导致等离子pH值(10.8)向等电点pH值的转变。在非常低的离子强度下结晶,此时溶菌酶在低至1.1的过饱和度值下结晶,放大了pH对蛋白质溶解度的影响。了解净电荷和离子强度对蛋白质 - 蛋白质相互作用的影响不仅对蛋白质晶体生长有价值,而且更广泛地对蛋白质 - 蛋白质或蛋白质 - 配体复合物的形成也有价值。

相似文献

1
No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH.
Biophys J. 1997 Oct;73(4):2156-63. doi: 10.1016/S0006-3495(97)78246-8.
2
HEW lysozyme salting by high-concentration NaCl solutions followed by titration calorimetry.
Biophys Chem. 2005 Feb 1;113(2):137-44. doi: 10.1016/j.bpc.2004.08.007.
3
Strong and specific effects of cations on lysozyme chloride solubility.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1582-7. doi: 10.1107/s0907444902014518. Epub 2002 Sep 26.
5
Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme.
Colloids Surf B Biointerfaces. 2004 May 1;35(1):33-40. doi: 10.1016/j.colsurfb.2004.02.005.
6
7
Importance of the nature of anions in lysozyme crystallisation correlated with protein net charge variation.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 1):1576-81. doi: 10.1107/s0907444902014592. Epub 2002 Sep 26.
8
Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.
Mol Pharm. 2015 Jan 5;12(1):179-93. doi: 10.1021/mp500533c. Epub 2014 Dec 2.
9
Control of specific attachment of proteins by adsorption of polymer layers.
Langmuir. 2006 Dec 19;22(26):11329-36. doi: 10.1021/la061790e.

引用本文的文献

1
Yield of Protein Crystallization from Metastable Liquid-Liquid Phase Separation.
Molecules. 2025 May 29;30(11):2371. doi: 10.3390/molecules30112371.
2
Diffusiophoresis of Macromolecules within the Framework of Multicomponent Diffusion.
Molecules. 2024 Mar 19;29(6):1367. doi: 10.3390/molecules29061367.
4
A comparative study of the drying evolution and dried morphology of two globular proteins in de-ionized water solutions.
RSC Adv. 2020 Apr 30;10(29):16906-16916. doi: 10.1039/d0ra01748e. eCollection 2020 Apr 29.
5
Droplet-Based Evaporative System for the Estimation of Protein Crystallization Kinetics.
Cryst Growth Des. 2021 Nov 3;21(11):6064-6075. doi: 10.1021/acs.cgd.1c00231. Epub 2021 Oct 18.
6
Carbonyl-based blue autofluorescence of proteins and amino acids.
PLoS One. 2017 May 25;12(5):e0176983. doi: 10.1371/journal.pone.0176983. eCollection 2017.
7
The second virial coefficient as a predictor of protein aggregation propensity: A self-interaction chromatography study.
Eur J Pharm Biopharm. 2015 Oct;96:282-90. doi: 10.1016/j.ejpb.2015.07.025. Epub 2015 Aug 7.
8
Urate oxidase purification by salting-in crystallization: towards an alternative to chromatography.
PLoS One. 2011 May 11;6(5):e19013. doi: 10.1371/journal.pone.0019013.
9
Liquid-liquid phase separation of a monoclonal antibody and nonmonotonic influence of Hofmeister anions.
Biophys J. 2010 Dec 1;99(11):3792-800. doi: 10.1016/j.bpj.2010.10.040.

本文引用的文献

1
X-ray fluorescence used to characterize the salt content of proteins.
J Synchrotron Radiat. 1997 Jan 1;4(Pt 1):28-35. doi: 10.1107/S0909049596012769.
3
Repartitioning of NaCl and protein impurities in lysozyme crystallization.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):785-98. doi: 10.1107/S0907444996003265.
4
Heterogeneity determination and purification of commercial hen egg-white lysozyme.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):776-84. doi: 10.1107/S090744499600279X.
5
Investigation of nucleating lysozyme solutions.
Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):396-7. doi: 10.1107/S0907444993013447.
6
Crystallization of previously desalted lysozyme in the presence of sulfate ions.
Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):366-9. doi: 10.1107/S0907444994001320.
7
THE SOLUBILITIES OF BETA-LACTOGLOBULINS A, B, AND AB.
Arch Biochem Biophys. 1964 Oct;108:99-108. doi: 10.1016/0003-9861(64)90360-1.
8
Phase behavior of small attractive colloidal particles.
Phys Rev Lett. 1996 Jan 1;76(1):150-153. doi: 10.1103/PhysRevLett.76.150.
9
Protein-protein diffusional encounter.
Biophys J. 1997 May;72(5):1915-6. doi: 10.1016/S0006-3495(97)78837-4.
10
Rapid, electrostatically assisted association of proteins.
Nat Struct Biol. 1996 May;3(5):427-31. doi: 10.1038/nsb0596-427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验