Suppr超能文献

基于脑电图的通信:替代信号预测方法的评估

EEG-based communication: evaluation of alternative signal prediction methods.

作者信息

Ramoser H, Wolpaw J R, Pfurtscheller G

机构信息

Department of Medical Informatics, Graz University of Technology, Austria.

出版信息

Biomed Tech (Berl). 1997 Sep;42(9):226-33. doi: 10.1515/bmte.1997.42.9.226.

Abstract

Individuals can learn to control the amplitude of EEG activity in specific frequency bands over sensorimotor cortex and use it to move a cursor to a target on a computer screen. For one-dimensional (i.e., vertical) cursor movement, a linear equation translates the EEG activity into cursor movement. To translate an individual's EEG control into cursor control as effectively as possible, the intercept in this equation, which determines whether upward or downward movement occurs, should be set so that top and bottom targets are equally accessible. The present study compares alternative methods for using an individual's previous performance to select the intercept for subsequent trials. In offline analyses, five different intercept selection methods were applied to EEG data collected while trained subjects were moving the cursor to targets at the top or bottom edge of the screen. In the first two methods-moving average, and weighted sum-a single intercept was selected for the entire 1-2 sec period of each trial. In the other three methods-blocked moving average, blocked weighted sum, and blocked recursive sum (a variation of the weighted sum)-an intercept was selected for each 200-ms segment of the trial. The results from these methods were compared in regard to their balance between upward and downward movements and their consistency of performance across trials. For all subjects combined, the five methods performed similarly. However, performance across subjects was more consistent for the moving average, blocked moving average, and blocked recursive sum methods than for the weighted sum and blocked weighted sum methods. Due to its consistent performance and its computational simplicity, the moving average method, using the five most recent pairs of top and bottom trials, appears to be the method of choice.

摘要

个体能够学会控制感觉运动皮层特定频段的脑电图(EEG)活动幅度,并利用它将光标移动到电脑屏幕上的目标位置。对于一维(即垂直)光标移动,一个线性方程将EEG活动转化为光标移动。为了尽可能有效地将个体的EEG控制转化为光标控制,该方程中的截距(它决定了向上还是向下移动)应设置为使顶部和底部目标具有同等可达性。本研究比较了利用个体先前表现来选择后续试验截距的替代方法。在离线分析中,将五种不同的截距选择方法应用于训练有素的受试者将光标移动到屏幕顶部或底部边缘目标时收集的EEG数据。在前两种方法——移动平均值和加权总和中,为每个试验的整个1 - 2秒时间段选择一个单一截距。在其他三种方法——分组移动平均值、分组加权总和以及分组递归总和(加权总和的一种变体)中,为试验的每个200毫秒时间段选择一个截距。比较了这些方法在向上和向下移动之间的平衡以及各试验间表现的一致性方面的结果。对于所有受试者而言,这五种方法表现相似。然而,移动平均值、分组移动平均值和分组递归总和方法在受试者间的表现比加权总和和分组加权总和方法更一致。由于其表现一致且计算简单,使用最近的五对顶部和底部试验的移动平均值方法似乎是首选方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验