Suppr超能文献

脑机接口翻译算法的参数是否应该持续调整?

Should the parameters of a BCI translation algorithm be continually adapted?

机构信息

Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States.

出版信息

J Neurosci Methods. 2011 Jul 15;199(1):103-7. doi: 10.1016/j.jneumeth.2011.04.037. Epub 2011 May 6.

Abstract

People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures.

摘要

有运动障碍或无运动障碍的人都可以学习控制从头皮记录的感觉运动节律 (SMR),以在一个或多个维度上移动计算机光标,或者可以使用 P300 事件相关电位作为控制信号进行离散选择。从使用基于 SMR 或 P300 的脑机接口的个体中收集的数据在离线时进行评估,以估计在脑机接口操作过程中不断调整翻译算法参数对性能的影响。通过自适应更新特征权重或自适应归一化特征,基于 SMR 的脑机接口的性能得到了增强。相比之下,这两种方法都不能提高 P300 的性能。

相似文献

1
Should the parameters of a BCI translation algorithm be continually adapted?
J Neurosci Methods. 2011 Jul 15;199(1):103-7. doi: 10.1016/j.jneumeth.2011.04.037. Epub 2011 May 6.
3
EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis.
J Neural Eng. 2012 Apr;9(2):026014. doi: 10.1088/1741-2560/9/2/026014. Epub 2012 Feb 21.
4
P300 Chinese input system based on Bayesian LDA.
Biomed Tech (Berl). 2010 Feb;55(1):5-18. doi: 10.1515/BMT.2010.003.
6
Supervised adaptive downsampling for P300-based brain computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:567-70. doi: 10.1109/IEMBS.2009.5334054.
7
The P300-based brain-computer interface (BCI): effects of stimulus rate.
Clin Neurophysiol. 2011 Apr;122(4):731-7. doi: 10.1016/j.clinph.2010.10.029. Epub 2010 Nov 9.
9
Single trial independent component analysis for P300 BCI system.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4035-8. doi: 10.1109/IEMBS.2009.5333745.
10
Subspace estimation approach to P300 detection and application to brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5071-4. doi: 10.1109/IEMBS.2007.4353480.

引用本文的文献

1
Brain-computer interfaces for amyotrophic lateral sclerosis.
Muscle Nerve. 2020 Jun;61(6):702-707. doi: 10.1002/mus.26828.
2
Towards reconstructing intelligible speech from the human auditory cortex.
Sci Rep. 2019 Jan 29;9(1):874. doi: 10.1038/s41598-018-37359-z.
3
EEG-Based Brain-Computer Interfaces.
Curr Opin Biomed Eng. 2017 Dec;4:194-200. doi: 10.1016/j.cobme.2017.11.004. Epub 2017 Nov 28.
4
Neural decoding of attentional selection in multi-speaker environments without access to clean sources.
J Neural Eng. 2017 Oct;14(5):056001. doi: 10.1088/1741-2552/aa7ab4. Epub 2017 Aug 4.
6
Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution.
PLoS One. 2014 Aug 27;9(8):e104854. doi: 10.1371/journal.pone.0104854. eCollection 2014.
7
The advantages of the surface Laplacian in brain-computer interface research.
Int J Psychophysiol. 2015 Sep;97(3):271-6. doi: 10.1016/j.ijpsycho.2014.07.009. Epub 2014 Aug 1.
8
Noninvasive brain-computer interfaces for augmentative and alternative communication.
IEEE Rev Biomed Eng. 2014;7:31-49. doi: 10.1109/RBME.2013.2295097.
9
ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance.
IEEE Trans Neural Syst Rehabil Eng. 2011 Oct;19(5):542-9. doi: 10.1109/TNSRE.2011.2166809.

本文引用的文献

1
The P300-based brain-computer interface (BCI): effects of stimulus rate.
Clin Neurophysiol. 2011 Apr;122(4):731-7. doi: 10.1016/j.clinph.2010.10.029. Epub 2010 Nov 9.
2
Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis.
J Neural Eng. 2008 Jun;5(2):155-62. doi: 10.1088/1741-2560/5/2/006. Epub 2008 Apr 22.
3
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
4
5
Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
J Neural Eng. 2006 Sep;3(3):235-44. doi: 10.1088/1741-2560/3/3/006. Epub 2006 Jul 20.
6
A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance.
Biol Psychol. 2006 Oct;73(3):242-52. doi: 10.1016/j.biopsycho.2006.04.007. Epub 2006 Jul 24.
7
The BCI competition. III: Validating alternative approaches to actual BCI problems.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):153-9. doi: 10.1109/TNSRE.2006.875642.
8
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):135-8. doi: 10.1109/TNSRE.2006.875637.
9
A fully on-line adaptive BCI.
IEEE Trans Biomed Eng. 2006 Jun;53(6):1214-9. doi: 10.1109/TBME.2006.873542.
10
Robust classification of EEG signal for brain-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. doi: 10.1109/TNSRE.2005.862695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验