Suppr超能文献

脑机接口翻译算法的参数是否应该持续调整?

Should the parameters of a BCI translation algorithm be continually adapted?

机构信息

Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, United States.

出版信息

J Neurosci Methods. 2011 Jul 15;199(1):103-7. doi: 10.1016/j.jneumeth.2011.04.037. Epub 2011 May 6.

Abstract

People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures.

摘要

有运动障碍或无运动障碍的人都可以学习控制从头皮记录的感觉运动节律 (SMR),以在一个或多个维度上移动计算机光标,或者可以使用 P300 事件相关电位作为控制信号进行离散选择。从使用基于 SMR 或 P300 的脑机接口的个体中收集的数据在离线时进行评估,以估计在脑机接口操作过程中不断调整翻译算法参数对性能的影响。通过自适应更新特征权重或自适应归一化特征,基于 SMR 的脑机接口的性能得到了增强。相比之下,这两种方法都不能提高 P300 的性能。

相似文献

1
Should the parameters of a BCI translation algorithm be continually adapted?脑机接口翻译算法的参数是否应该持续调整?
J Neurosci Methods. 2011 Jul 15;199(1):103-7. doi: 10.1016/j.jneumeth.2011.04.037. Epub 2011 May 6.
6
Supervised adaptive downsampling for P300-based brain computer interface.基于P300的脑机接口的监督式自适应下采样
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:567-70. doi: 10.1109/IEMBS.2009.5334054.
7
The P300-based brain-computer interface (BCI): effects of stimulus rate.基于 P300 的脑-机接口(BCI):刺激率的影响。
Clin Neurophysiol. 2011 Apr;122(4):731-7. doi: 10.1016/j.clinph.2010.10.029. Epub 2010 Nov 9.
9
Single trial independent component analysis for P300 BCI system.用于P300脑机接口系统的单试验独立成分分析
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4035-8. doi: 10.1109/IEMBS.2009.5333745.

引用本文的文献

3
EEG-Based Brain-Computer Interfaces.基于脑电图的脑机接口
Curr Opin Biomed Eng. 2017 Dec;4:194-200. doi: 10.1016/j.cobme.2017.11.004. Epub 2017 Nov 28.
7
The advantages of the surface Laplacian in brain-computer interface research.表面拉普拉斯算子在脑机接口研究中的优势。
Int J Psychophysiol. 2015 Sep;97(3):271-6. doi: 10.1016/j.ijpsycho.2014.07.009. Epub 2014 Aug 1.

本文引用的文献

1
The P300-based brain-computer interface (BCI): effects of stimulus rate.基于 P300 的脑-机接口(BCI):刺激率的影响。
Clin Neurophysiol. 2011 Apr;122(4):731-7. doi: 10.1016/j.clinph.2010.10.029. Epub 2010 Nov 9.
3
Toward enhanced P300 speller performance.迈向增强的P300拼写器性能。
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
9
A fully on-line adaptive BCI.一种全在线自适应脑机接口。
IEEE Trans Biomed Eng. 2006 Jun;53(6):1214-9. doi: 10.1109/TBME.2006.873542.
10
Robust classification of EEG signal for brain-computer interface.用于脑机接口的脑电信号稳健分类
IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9. doi: 10.1109/TNSRE.2005.862695.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验