Suppr超能文献

脑机接口的临床应用:现状与未来展望

Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects.

作者信息

Mak Joseph N, Wolpaw Jonathan R

机构信息

Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509 USA, (

出版信息

IEEE Rev Biomed Eng. 2009;2:187-199. doi: 10.1109/RBME.2009.2035356.

Abstract

Brain-computer interfaces (BCIs) allow their users to communicate or control external devices using brain signals rather than the brain's normal output pathways of peripheral nerves and muscles. Motivated by the hope of restoring independence to severely disabled individuals and by interest in further extending human control of external systems, researchers from many fields are engaged in this challenging new work. BCI research and development have grown explosively over the past two decades. Efforts have recently begun to provide laboratory-validated BCI systems to severely disabled individuals for real-world applications. In this review, we discuss the current status and future prospects of BCI technology and its clinical applications. We will define BCI, review the BCI-relevant signals from the human brain, and describe the functional components of BCIs. We will also review current clinical applications of BCI technology, and identify potential users and potential applications. Finally, we will discuss current limitations of BCI technology, impediments to its widespread clinical use, and expectations for the future.

摘要

脑机接口(BCIs)允许用户使用脑信号而非通过外周神经和肌肉这种大脑的正常输出途径来进行通信或控制外部设备。受恢复重度残疾个体独立性的希望以及进一步扩展人类对外部系统控制的兴趣的推动,来自多个领域的研究人员都在从事这项具有挑战性的新工作。在过去二十年中,脑机接口的研究与开发呈爆发式增长。最近已开始努力为重度残疾个体提供经过实验室验证的脑机接口系统,以用于实际应用。在本综述中,我们讨论脑机接口技术及其临床应用的现状和未来前景。我们将定义脑机接口,回顾来自人脑的与脑机接口相关的信号,并描述脑机接口的功能组件。我们还将回顾脑机接口技术当前的临床应用,并确定潜在用户和潜在应用。最后,我们将讨论脑机接口技术当前的局限性、其广泛临床应用的障碍以及对未来的期望。

相似文献

1
Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects.
IEEE Rev Biomed Eng. 2009;2:187-199. doi: 10.1109/RBME.2009.2035356.
2
Brain-computer interfaces for communication and control.
Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3.
3
Brain-computer interfaces: Definitions and principles.
Handb Clin Neurol. 2020;168:15-23. doi: 10.1016/B978-0-444-63934-9.00002-0.
4
Human visual skills for brain-computer interface use: a tutorial.
Disabil Rehabil Assist Technol. 2020 Oct;15(7):799-809. doi: 10.1080/17483107.2020.1754929. Epub 2020 Jun 1.
5
Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.
Front Neurosci. 2010 Sep 7;4. doi: 10.3389/fnins.2010.00161. eCollection 2010.
6
7
Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives.
IEEE Trans Biomed Eng. 2014 May;61(5):1425-35. doi: 10.1109/TBME.2014.2312397.
8
Brain-computer interface technology: a review of the Second International Meeting.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):94-109. doi: 10.1109/tnsre.2003.814799.
10
Visual and auditory brain-computer interfaces.
IEEE Trans Biomed Eng. 2014 May;61(5):1436-47. doi: 10.1109/TBME.2014.2300164.

引用本文的文献

2
P300 ERP System Utilizing Wireless Visual Stimulus Presentation Devices.
Sensors (Basel). 2025 Jun 7;25(12):3592. doi: 10.3390/s25123592.
3
Exploring the Impact of Brain-Computer Interfaces on Health Care: Innovations, Challenges, and Future Prospects: A Review Article.
J Pharm Bioallied Sci. 2024 Dec;16(Suppl 4):S3037-S3040. doi: 10.4103/jpbs.jpbs_1005_24. Epub 2024 Oct 29.
5
Optimization of stimulus properties for SSVEP-based BMI system with a heads-up display to control in-vehicle features.
PLoS One. 2024 Sep 17;19(9):e0308506. doi: 10.1371/journal.pone.0308506. eCollection 2024.
6
Evaluating the Feasibility of Visual Imagery for an EEG-Based Brain-Computer Interface.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2209-2219. doi: 10.1109/TNSRE.2024.3410870. Epub 2024 Jun 19.
7
Improved empirical mode decomposition bagging RCSP combined with Fisher discriminant method for EEG feature extraction and classification.
Heliyon. 2024 Mar 20;10(7):e28235. doi: 10.1016/j.heliyon.2024.e28235. eCollection 2024 Apr 15.
8
Exploring EEG-based motor imagery decoding: a dual approach using spatial features and spectro-spatial Deep Learning model IFNet.
Front Neuroinform. 2024 Feb 29;18:1345425. doi: 10.3389/fninf.2024.1345425. eCollection 2024.

本文引用的文献

1
Electroencephalographic (EEG) control of three-dimensional movement.
J Neural Eng. 2010 Jun;7(3):036007. doi: 10.1088/1741-2560/7/3/036007. Epub 2010 May 11.
2
Decoding flexion of individual fingers using electrocorticographic signals in humans.
J Neural Eng. 2009 Dec;6(6):066001. doi: 10.1088/1741-2560/6/6/066001. Epub 2009 Oct 1.
3
Mapping broadband electrocorticographic recordings to two-dimensional hand trajectories in humans Motor control features.
Neural Netw. 2009 Nov;22(9):1257-70. doi: 10.1016/j.neunet.2009.06.036. Epub 2009 Jul 2.
4
Evolution of brain-computer interfaces: going beyond classic motor physiology.
Neurosurg Focus. 2009 Jul;27(1):E4. doi: 10.3171/2009.4.FOCUS0979.
5
7
Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces.
J Neurosci Methods. 2009 Apr 30;179(1):78-84. doi: 10.1016/j.jneumeth.2009.01.016. Epub 2009 Jan 29.
9
A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.
Ann N Y Acad Sci. 2009 Mar;1157:90-100. doi: 10.1111/j.1749-6632.2008.04122.x.
10
An auditory oddball (P300) spelling system for brain-computer interfaces.
Psychophysiology. 2009 May;46(3):617-25. doi: 10.1111/j.1469-8986.2008.00783.x. Epub 2009 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验