Suppr超能文献

Finite difference predictions of P-SV wave propagation inside submerged solids. II. Effect of geometry.

作者信息

Dahake G, Gracewski S M

机构信息

Department of Mechanical Engineering, University of Rochester, New York 14627, USA.

出版信息

J Acoust Soc Am. 1997 Oct;102(4):2138-45. doi: 10.1121/1.419593.

Abstract

To understand better direct stress wave contributions to stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the numerical formulation developed in part I is applied to study the time evolution of stress wave fields produced inside submerged isotropic elastic solids having irregular geometries. Cut spheres are used to model stones that have already had an initial fracture. Ellipses are used to approximate other deviations from a spherical geometry. The propagation and focusing of the longitudinal (P) and shear (S) wave fronts are visualized by presenting internal strain contours. Internal strain measurements are obtained from strain gauges embedded inside plaster specimens to confirm the focusing effect obtained from the concave back surfaces of the stones. Fragmentation experiments indicate damage caused by spalling and direct stress wave focusing as well as a front surface pit presumably created by cavitation activity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验