Dahake G, Gracewski S M
Department of Mechanical Engineering, University of Rochester, New York 14627, USA.
J Acoust Soc Am. 1997 Oct;102(4):2125-37. doi: 10.1121/1.419592.
A finite difference scheme has been developed to analyze internal strains in submerged elastic solids of irregular geometry subjected to ultrasonic wave sources that simulate a clinical lithotripter. In part I of this paper, the finite difference formulation that accounts for arbitrary liquid-solid interfaces is presented and sample numerical results are discussed. Two different methods for discretizing the liquid-solid interface conditions are developed. The first treats the interface conditions explicitly. The second integrates the heterogeneous wave equations across the interface using the divergence theorem. Both schemes account for varying grid sizes and give similar results for a test problem consisting of a radially diverging source incident on the rectangular solid. The time sequence obtained numerically for strain at the center of a rectangular solid matches well with the experimental results [S. M. Gracewski et al., J. Acoust. Soc. Am. 94, 652-661 (1993)] in terms of the arrival times and the relative amplitudes of the peaks. In addition, strain contours are plotted to visualize the propagation of P (longitudinal) and S (shear vertical) waves inside a circular solid. The reflection from the concave back surface of the circular solid has a focusing effect with the subsequent formation of focal zones, known as caustics, where peak strains occur. In part II of this paper, the finite difference scheme is used to study the effects of geometry changes on the internal stresses and caustics predicted in model stones subjected to lithotripter pulses.
已开发出一种有限差分格式,用于分析模拟临床碎石机的超声波源作用下不规则几何形状的浸没弹性固体内部应变。在本文的第一部分,给出了考虑任意液固界面的有限差分公式,并讨论了样本数值结果。开发了两种离散液固界面条件的不同方法。第一种方法显式处理界面条件。第二种方法使用散度定理在界面上对非均匀波动方程进行积分。两种格式都考虑了变化的网格尺寸,对于由径向发散源入射到矩形固体上的测试问题给出了相似的结果。在矩形固体中心处通过数值获得的应变时间序列在到达时间和峰值相对幅度方面与实验结果[S. M. Gracewski等人,《美国声学学会杂志》94, 652 - 661(1993)]匹配良好。此外,绘制了应变等值线以可视化圆形固体内部P(纵向)波和S(垂直剪切)波的传播。圆形固体凹形后表面的反射具有聚焦效应,随后形成焦区,即峰值应变出现的地方,称为焦散。在本文的第二部分,有限差分格式用于研究几何形状变化对受碎石机脉冲作用的模型结石中预测的内应力和焦散的影响。